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Abstract 

  

Vision is the primary sense by which most biological systems collect information 

about their environment.  Computer vision is a branch of artificial intelligence concerned 

with endowing machines with the ability to understand images.  Object recognition is a 

key part of machine vision with far reaching benefits ranging from target recognition, 

surveillance systems, to automation systems. 

 Extraction of salient features from an image is one of the key steps in object 

recognition.  Typically, geometric primitives are extracted from an image using local 

analysis.  However, the wavelet transform provides a global approach with good locality.  

Additionally, the directional and multiresolution properties may be exploited as a pre-

processor to a neural network. 

This thesis examines the benefits of the wavelet transform as a pre-processor to a 

neural network for object recognition.  Scaling of the wavelet coefficients and different 

neural network topologies are investigated.  The system developed in this research is not 

intended to be critiqued on its classification performance.  It only successfully classifies 

about 20% of the photographed models, however more important is the determination of 

the benefits of the wavelet transform, the effects of the various post-wavelet scaling 

functions, and the best neural network topology for this research.  This is done by 

analyzing the system’s performance on CAD models.
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DISCOVERING THE MERIT OF THE WAVELET TRANSFORM FOR OBJECT 

CLASSIFICATION 

 

 

I.  Introduction 

 Three dimensional object recognition is a very difficult problem.  Biological 

systems make this task seem easy, yet it proves surprisingly challenging for machines.  

Many different approaches have been taken with varied levels of success.  Human vision 

has little trouble isolating the object of interest from an image, comparing that object to 

another, and deciding whether it is the same object.  This is a common task performed 

thousands of times daily with never a second thought.  However, for machines this task 

represents multiple problems that involve large amounts of computational resources. 

 The first step in object recognition is isolating the objects of interest from an 

image.  The human visual system (HVS) can focus on an object of interest to extract 

further details.  Noise and distortion pose little problems for the HVS. 

 Once the object is isolated, the human eye depends on several cues to determine 

the three dimensional geometry.  Texture, shading, contours, and motion are all cues used 

by the HVS to derive geometry information.   
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 Classifying the object into pre-arranged classes is another significant problem.  

Classification compares an object to a pre-existing model rather than having to form a 

new class as in the more difficult problem of object recognition. 

 These problems are approached many different ways with varied levels of 

success.  In spite of the many hurdles, the benefits offered by machine vision easily make 

the goal worth pursuing.  Target tracking, surveillance, and automated systems are some 

of the rewards of machine vision. 

 

1.1  Research Focus 

 This research focuses on determining the benefits of using a wavelet transform as 

a data pre-processor to a neural network for object classification.  The wavelet transform 

yields directionally sensitive, multi-resolution subbands that may be successfully 

exploited by neural networks for object classification.  Additionally, several rescaling 

functions of the wavelet coefficients are explored to further optimize the performance of 

the neural network.  A number of neural network topologies are also investigated to 

determine which proves the most successful for object classification. 

 

1.1.1  Problem Statement. 

 Image recognition is a complicated problem.  Therefore, the somewhat less 

difficult problem of image classification is engaged.  The system developed in this 

research is not intended to solve the image recognition problem, but only provide some 

insight into the possible benefits of the wavelet transform.  Specifically, the possible 
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benefits of using the wavelet transform as a neural network pre-processor are explored in 

this research.   

 

1.1.2  Objective and Approach.  

  The main objective of this research is to discover if the wavelet transformation 

can be used as a pre-processor to a neural network for successful object classification.  

Further goals are to examine what data transformations, if any, increase the success rate 

and what neural network topologies prove the most successful.  The final goal is to 

determine if the multiresolution aspect of the wavelet transform is usable to increase the 

success rate by processing each wavelet subband independently and then correlating the 

results. 

To meet these goals, the wavelet transform of an image is computed, optionally 

processed with a data scaling function, and finally processed with various neural network 

topologies.  The system ultimately produces a success rate based on how many of the 

presented images are correctly classified.  Ideally, the objects should successfully 

correlate regardless of the object’s elevation angle, rotation, and scale.  Examination of 

the results of using the directionally sensitive wavelet subbands as inputs to neural 

networks should provides some insight into the worth of wavelet transforms as feature 

extractors.  
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1.1.3  Scope. 

 Image recognition is a complex problem.  This research engages the subset 

problem of image classification.  This should still identify the possible benefits of the 

wavelet transform.  Furthermore, the data set is constrained to a limited number of 

objects.  The data images used in this research are created so that the system is not further 

hampered with the task of isolating the object of interest or challenged by excessive 

noise. 

 

1.2  Sponsor Acknowledgement 

 This research was sponsored by the Air Force Research Laboratory (AFRL), 

Embedded Information Systems Engineering Branch (IFTA).  IFTA develops 

information system technologies that enable command and control of both current and 

next-generation aerospace weapon systems. 

 

1.3  Document Overview 

 This thesis reports research performed while exploring the wavelet transform as a 

pre-processor to a neural network for object classification.  Chapter II provides an 

introduction to neural networks, the wavelet transform, and object recognition.  Chapter 

III outlines the methodology used in this research and the experiments performed.  

Chapter IV provides results, analysis, and conclusions.  Chapter V concludes with a final 

summary and future recommendations. 
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II.  Literature Review 

This chapter provides some background information about the subject areas 

involved in this research.  Throughout Chapter 2, certain sentences are in bold print to 

indicate a decision directly affecting the setup of this research.  Section 2.1 covers the 

principles of neural networks and the reasons for choosing the particular neural network 

model used in this research.  These reasons are presented in a concise list in the chapter 

summary in Section 2.4.  Section 2.2 briefly discusses the wavelet transform, especially 

as applied to imagery.  Section 2.3 discusses object recognition and classification.  

Additionally, decisions regarding the data set are emphasized with bold print. 

 

2.1  Neural Networks 

 Neural networks (NNs) form an artificial intelligence system that is modeled after 

the nervous system.  Neural networks are used to solve complex problems and problems 

that are difficult to formulate by using a nonlinear model.   

 

2.1.1  Overview and Advantages. 

Neural networks have several properties that make them very useful.  In brief, 

these properties are [Hayk94].    

• Non-linearity.  Neural networks are inherently nonlinear due to the non-linearity 

of each of the neurons composing the network.   

• Input-output mapping.  Neural networks often use a supervised learning system in 

which thresholds and weights of the NN are adjusted to meet the desired output 
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response.  This input-output mapping is similar to nonparametric statistical 

inference (model-free estimation), but does not require a probabilistic distribution 

model. 

• Adaptivity.  NNs can adapt to their environment by changing thresholds and 

weights and may perform better in a changing environment.  However, this 

adaptability comes at the cost of stability.   

• Evidential Response.  Besides merely providing a selection as in the case of a 

classifying neural network, the confidence with which the decision is made can 

also be determined.  This information can be used to improve the classification 

performance. 

• Contextual information.  The structure and activation state of the network stores 

information.  Changes to neurons can globally affect other neurons. 

• Fault Tolerance.  Since information is distributed throughout the network, the 

neural network has some inherent fault tolerance and tends to fail gracefully as 

damage occurs to neurons. 

• VLSI implementability.  Neural networks are massively parallel.  This parallelism 

lends itself to implementation using VLSI hardware. 

• Uniformity of analysis and design.  Neural networks share the same notation 

regardless of application; therefore it is possible to share theories and learning 

algorithms.  Additionally, it is also possible to join networks together. 

• Neurobiological analogy.  The human brain is the best example of a fast and 

powerful fault-tolerant, massively parallel architecture. 
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2.1.2  Biological Equivalence.   

The nervous system is composed of a large network of neurons.  Each neuron has 

three components: the dendrites, the cell body, and the axons (nerve fibers).  Dendrites 

are transmitters and axons are receivers.  The nervous system affects the conductivity of 

the synapse, the area between the dendrites and the axons.  Synapses are excitatory or 

inhibitory.  Neurons interact when the axons and dendrites are close enough together and 

the axons receive a strong enough signal from one or more dendrites.  In animal nervous 

systems, thousands of neurons are close enough together to interact, forming a 

complicated network. 

 

Figure 2.1.  Biological neurons. 
 

 When a neuron receives a signal from other neurons, it causes the receiving 

neuron’s voltage to increase through an electro-chemical process.  Neurons have multiple 
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inputs which are weighted differently.  When the cumulative received voltage exceeds a 

certain threshold, the neuron fires sending a signal to another neuron, which may in turn 

be stimulated enough to fire.  Neurons have a certain dynamic range from no response to 

a full response and exhibit a nonlinear behavior.  This behavior is difficult to analyze 

mathematically, yet is essential for the effectiveness of neural networks. 

 Artificial neural networks (ANN) operate in the same manner as biological 

nervous systems.  When the combination of inputs surpasses the threshold, a neuron fires 

a weighted signal to other neurons.  This activation function can be a linear threshold 

function (all-or-nothing), a piecewise-linear function, or a sigmoid function depending on 

the neural network model used.  A single neuron cannot perform basic Boolean functions 

such as an exclusive OR.  However, just three neurons are capable of solving this 

problem.  This is described in more detail in Section 2.1.8.  Larger networks can solve 

more difficult problems and can compute any Boolean function.  Binary threshold logic 

units with unit time delays can realize any finite state automata and a sufficiently large 

finite state machine can compute any finite algorithm.  Therefore, in theory, neural 

networks using threshold neurons should be capable of computing any computable 

function. 

 Neural networks depend on many simple processors with few processing steps 

while conventional computers have few complex processors that perform many 

computational steps.  Neural networks employ a distributed processing paradigm that 

allows for graceful degradation while conventional computers rely on symbolic 

processing that suffer from catastrophic failure if any component should fail.  In short, 

biological neural networks rely on many parallel, relatively slow operations (10 billion 
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neurons and 60 trillion synapses that operate in the millisecond range) whereas 

conventional computers are usually single threaded yet very fast (nanosecond range). 

 Neural networks provide a form of artificial intelligence and, individually, each 

node is easily computable.  Computers can realize complex neural networks, provided 

that the computers have enough memory.  However, neural networks have some major 

problems that limit their performance.  For instance, it is difficult to determine the 

following properties: 

1. Which neurons should be connected  

2. The weights for each of the edges (the strength of firing between neurons) 

3. The time delta allowed for signal arrivals to add together 

 

   Even though the back-propagation training method partially solves the second 

problem, it is still slow and imperfect.  Additionally, new problems arise such as stability 

and convergence.  The weights and thresholds of the neurons must be adjusted when the 

neural network’s output does not match the desired output.  The rules that determine how 

these changes are made are called the learning algorithm and are often the most difficult 

aspect of a neural network.  Yet another failing of neural networks is that the 

computational complexity increases exponentially with the size of the network.   

 

2.1.3  Types of Neural Networks.   

Neural networks can employ a variety of network architectures, algorithms, and 

training methods.  The architecture of the neural network is closely linked with the 
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learning algorithm used.  The major characteristics of neural networks are discussed in 

this section. 

 

2.1.4  Physical Architecture.    

 The architecture is the way in which the neurons interconnect in the neural 

network.  Architecture encompasses the number of layers, the connections between the 

layers, feedback loops, and the firing model.  The firing model of the neurons is either 

probabilistic or deterministic.  Probabilistic neurons fire with a certain probability when 

stimulated while deterministic neurons always fire when the inputs exceed a pre-

determined threshold.  Additionally, the activation function (firing model) uses a 

threshold function, a piecewise-linear function, or a sigmoid function.  A common 

activation function is the sigmoidal nonlinearity defined by the logistic function: 

     1
1 jj vy

e−=
+

     (2.1) 

where yj is the output of neuron j, and vj is the total internal activity (sum of all inputs) of 

that neuron.  The logistic activation function is used in this research due to its 

desirable nonlinearity, biological equivalence, and the fact that it is “by far the most 

common form of activation function used in the construction of artificial neural 

networks,” [Hayk94]. 

Neural networks are organized in layers of one or more neurons in each layer.  

The number of neurons may differ in each layer.  In the most basic model, there is an 

input layer connected directly to an output layer of computational nodes.  Hidden layers 

often exist between the input and output layers.  Hidden layers allow the NN to extract 
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higher-order statistics and achieve a global perspective instead of only achieving a local 

perspective.  Local features are extracted in the first hidden layer and global features are 

extracted in the second hidden layer.  A single hidden layer is not enough to solve all 

inverse problems such as inverse kinematics (dynamics) and control problems.  However, 

multilayer feedforward networks with two hidden layers are sufficient for solving these 

type of problems because they can approximate the required functions.  Neurons tend to 

interact with each other globally when using a hidden layer.  However, this “interaction 

makes it difficult to improve the approximation at one point without worsening it at some 

other point,” [Hayk94].  In other words, the network takes longer to train and is 

inherently less stable.    For these reasons, a four layer network using two hidden 

layers is used for this research. 

Neural networks interconnected in a feedforward manner or a feedback manner.  

A feedforward scheme passes the outputs from each layer into the next layer as inputs 

without feedback.  Alternately, a recurrent neural network uses a feedback scheme that 

can have one or more feedback loops.  Recurrent networks employ unit-delay elements 

which result in a nonlinear dynamical behavior.  Recurrent networks such as the Hopfield 

network, the Boltzmann machine and the MFT machine require time to settle to 

equilibrium condition and therefore may be excessively slow.  For this reason, recurrent 

networks are avoided and a feedforward network is used for this research. 

Full or partial connections exist between layers.  In a fully connected network, 

every neuron in a layer is connected to every neuron in the next layer.  A partially 

connected network does not connect a neuron to every neuron in the next layer.  Figure 

2.2 shows an example of a neural network containing the different elements discussed. 
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The input layer is partially connected to a hidden layer.  The hidden layer is fully 

connected to the output layer. 

 

Figure 2.2.  Neural network with a single hidden layer, a partially connected layer, and a 
fully connected layer. 

 

The feedforward procedure operates by calculating the product of each neuron’s 

output and its weight connection to each of the nodes in the next layer.  The net sum of 

all inputs is calculated for each node.  This process must repeat for every layer of nodes.  

As an example, consider a network used in research consisting of 256 nodes in the first 

layer, 128 nodes in the first hidden layer, 32 nodes in the second hidden layer, and 8 

nodes in the output.  This network would take approximately 37,120 operations to 

process each input pattern.  This figure is calculated as follows: 

 

(Inputs x Hidden1) + (Hidden1 x Hidden2) + (Hidden2 x Outputs) = Operations (2.2) 
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When applied to this example network, the number of operations required is 

 

  (256 x 128) + (128 x 32) + (32 x 8) = 37,120 operations  (2.3) 

 

 The multilayer perceptron (MLP) and radial basis function (RBF) networks are 

the two most commonly used network architectures [Sarl96].  Both networks, in theory, 

can solve any solvable function, but “the MLP architecture is the most popular one in 

practical applications,” [Hayk94].  The multilayer perceptron utilizing the back-

propagation training method has solved difficult and diverse problems.  The hidden 

layers, high degree of connectivity, nonlinear nature of the output layer, and the ability to 

learn through experience give the multilayer perceptron its computing power. For these 

reasons, a fully connected, multilayer perceptron network using a back-propagation 

training method is used in this research.  Section 2.1.6.1 discusses the back-

propagation training method in more detail.   

 

2.1.5  Learning.   

 “Learning is a process by which the free parameters of a neural network are 

adapted through a continuing process of stimulation by the environment in which the 

network is embedded,” [Hayk94].  Learning simply means that the nodes are able to 

change their input-output behaviors in response to changes in the environment.  There are 

several methods of learning.  Each method can be supervised, unsupervised, or use a 

reinforcement stratagem. 
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2.1.5.1  Methods of Learning. 

There are four basic methods of neural network learning: error-correction, 

Hebbian, competitive, and Boltzmann.  Hebbian and competitive learning are inspired by 

biological systems.  Error-correction learning is based on optimum filtering.  Boltzmann 

learning is based on ideas from thermodynamics and information theory. 

Error-correction learning attempts to minimize a cost function based on an error 

signal so that each neuron’s actual response approaches the desired response in a 

statistical sense.  Error-correction learning then becomes an optimization problem.  A 

commonly used cost function is the mean square error (MSE) in which MSE is 

minimized.  The goal is to stop training when the MSE is minimized.  However, the MSE 

has many local minima before reaching a global minimum.  If the system is stable, the 

mean square error stabilizes.  The rate of learning affects stability – too high and the 

system is unstable, too small and the system takes an excessively long time to learn.  The 

back-propagation algorithm is based on error-correction learning.  The error back-

propagation method is used for this research due to its popularity and the fact that 

“it provides a computationally efficient method for the training of multilayer 

perceptrons,” [Hayk94] 

Hebbian learning is based on associative learning.  “Positively correlated activity 

produces synaptic strengthening and uncorrelated or negatively correlated activity 

produces synaptic weakening,” [Hayk94].  If a neuron repeatedly attempts to cause 

another neuron to fire, then its efficiency to fire that neuron increases.  Uncorrelated 

firings of neurons weaken their synaptic coupling. 
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Competitive learning is a system in which the neurons compete to be the one that 

fires.  The winner is referred to as a winner-takes-all neuron since only a single output 

neuron is active at one time. 

Boltzmann learning uses a system in which all neurons have binary values for 

their states (energies).  All synaptic connections are symmetric and units are updated one 

at a time.  No feedback exists.  Units are picked and states changed with some probability 

and eventually the system settles to a certain low energy state.  Mean-field theory (MFT) 

learning is a subset of Boltzmann learning that was developed because the Boltzmann 

machine suffers from slow learning.  MFT learning employs a deterministic instead of a 

probabilistic neuron firing model. 

 

2.1.5.2  Classes of Learning. 

Supervised learning requires an external teacher that knows the desired output for 

each input.  The network’s parameters are adjusted according to the difference between 

the actual response and the desired response with the goal of fully emulating the teacher 

to correctly respond to all inputs.  There is no external teacher to oversee the learning 

process for unsupervised learning.  An ANN using unsupervised learning is often called 

self-organizing.  An unsupervised network attempts to develop the ability to form internal 

representations for encoding features of the input and thereby create new classes 

automatically. 

In non-learning and reinforcement learning, the NN receives a reinforcement 

signal to maximize a scalar performance index.  This signal makes the desired action 

more likely to happen again.  “The basic idea behind reinforcement learning is to learn 
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the evaluation function so as to predict the cumulative discounted reinforcement to be 

received in the future,” [Hayk94].  A reinforcement system seeks only to improve 

performance.  This is done through trial and error, exploration, and delayed rewards.  The 

primary difference between a supervised learning system and a reinforcement system is 

that the supervised system is evaluated and directed in how to change its behavior while a 

reinforcement system simply evaluates its performance without using external guidance.  

A reinforcement system must use trial and error to probe its environment and figure out 

how to change its behavior.  Reinforcement learning systems are slowed down by the 

conflict between the exploration process and the desire to improve their behavior.  

Supervised systems do not suffer from this problem. 

  Supervised learning is used in this research due to the unlimited amount of 

possible input classes.  A reinforcement system is unable to probe its environment, due 

to the nearly infinite number of possible inputs. 

 

2.1.5.3  Learning Tasks. 

The learning method employed is largely determined by the learning task that the 

neural network is to perform.  The learning task classes are listed below [Hayk94]: 

1. Approximation.  The ANN approximates an unknown nonlinear input-output 

mapping, ( )d g x= , where x is the input and d is the desired output.  Supervised 

learning may be viewed as an approximation problem. 

2. Association.  There are two types of association tasks, autoassociation and 

heteroassociation.  An ANN performing an autoassociation task stores a set of 

inputs and then, when presented with a noisy version, the ANN retrieves the 
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correct pattern. Heteroassociation tasks pair the set of inputs with a set of outputs.  

Autoassociation tasks use unsupervised learning while heteroassociation tasks use 

supervised learning. 

3. Pattern classification.  Inputs are placed into a fixed number of categories.  The 

ANN is repeatedly trained with a set of inputs and the correct classification.  New 

input patterns are then presented for the NN to classify.  As described, this task 

uses supervised learning.  When used in an unsupervised learning manner, the 

ANN must perform an adaptive feature extraction or cluster the information prior 

to performing classification. This research is a supervised pattern classification 

task. 

4. Prediction.  These tasks require the ANN to predict a sample based on past 

samples.  The goal is to model the underlying process as closely as possible.  

Often, error-correction learning is used to change free parameters to create a 

better model. 

5. Control.  The ANN controls another process.  Difficult processes involving 

problems such as nonlinearity, noise, and many parallel actuators can be 

controlled.     

6. Beamforming.  Beamforming tasks are a type of spatial filtering used to locate a 

target signal through additive noise.  The task of locating a single voice in a 

crowded room is a good example of this type of task. 
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2.1.6  Training of Neural Networks. 

Training of neural networks is a nontrivial problem.  The “back-propagation 

algorithm represents a “landmark” in neural networks in that it provides a 

computationally efficient method for the training of multilayer perceptrons,” [Hayk94]. 

Learning requires many presentations of examples, or patterns, in a training set.  

A complete training set, or epoch, is a sequence of examples drawn independently at 

random until every pattern in that set has been used.  The learning process continues until 

the error converges to some pre-determined minimum value.  Randomizing the order of 

presentation of training examples helps to “roll past” local minima, or saddle points.  

Furthermore, the training examples should contain both positive and negative examples. 

 

2.1.6.1  Back-propagation. 

Back-propagation is an error-correction learning technique that offers a 

computationally efficient method for training multilayer perceptron networks.  The goal 

of back-propagation learning is the generalization of an input-output relationship.  Back-

propagation works by making two passes through the network: a forward and a backward 

pass.  The forward pass works by keeping the synaptic weights fixed, applying a 

stimulus, and then measuring the actual response.  The output is then compared to the 

desired response and an error signal generated.  The error signal is then propagated 

backwards through the network and the synaptic weights and biases adjusted to achieve a 

more ideal response.  Back-propagation is a gradient technique and not an optimization 

technique.  It performs a stochastic gradient descent in weight space for pattern-by-
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pattern updating of synaptic weights and is simple to compute locally.  Computations of 

each neuron are influenced only by those neurons that are in physical contact with it.   

Another benefit of back-error-correction learning is that it permits graceful 

degradation, such as hardware failures, if small numbers of transient faults are injected 

into the network at each step.  In other words, if the network is trained by adding faults, 

then the system becomes somewhat immune to small hardware failures and noise.   

However, back-propagation is not without faults.  For large networks, “the rate of 

convergence in back-propagation learning tends to be relatively slow, which in turn 

makes it computationally expensive,” [Hayk94].  This is because it uses the minimum 

amount of available information resulting in a slow convergence speed.  With large 

networks, the training time can be prohibitively large and make the algorithm impractical.  

Experiments show that learning time scales exponentially with the number of inputs 

[Tesa88]. 

Local minima valleys can be problematic since back-propagation is a hill-

climbing technique.  The algorithm can get “stuck” in a valley and not progress towards 

the global minimum.  Randomized the order of presentation from one epoch to the next 

somewhat reduces this problem and also tends to speed convergence of the network.  

Randomly “jogging” the weights by a small amount after each training epoch can also 

help the network get past local minima.  For this reason, the weights are randomly 

jogged within 97 – 102% of their original values after each epoch.  An even 

distribution is not used so that the cumulative changes will differ from the pre-jogged 

values. 
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The back-propagation algorithm has another limitation in that it can only learn a 

static input-output mapping.  However, this is well suited for pattern-recognition 

applications where both the input and the outputs represent spatial patterns.  This is 

another reason for choosing back-propagation as the training method. 

A problem suffered by learning algorithms is determining stopping criteria.  A 

common convergence criterion is considering the network trained when the absolute rate 

of change in the MSE is about 0.1 to 1%.  In more demanding applications, error rates as 

low as 0.01% may be used [Hayk94]. 

To outline the back-propagation method: 

1. Initialization. Start with reasonable network configuration.  Set all synaptic 

weights and threshold levels to uniformly distributed, small random numbers. 

2. Present training examples.  Present an epoch.  Steps 3-5 are performed for each 

sample in the epoch. 

3. Forward computation.  Compute the error signal where error is the desired 

response minus the real response. 

4. Backward computation.  Adjust the synaptic weights and biases by presenting the 

error signal. 

5. Iterate.  Iterate until the free parameters stabilize and the mean square error is 

acceptably small.  Momentum and learning-rate parameters are typically adjusted 

(usually decreased) as the number of training iterations increase. 

 

  The back-propagation method used in this research relies on a sigmoidal 

activation function of the neurons which adds to the computational complexity of the 
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back-propagation algorithm.  However, “the presence of nonlinearities is important 

because, otherwise, the input-output relation of the network could be reduced to that of a 

single-layer perceptron,” [Hayk94] which would severely limit its computational power.  

Analyzing the back-propagation method reveals that the computational complexity 

required to process each pattern is approximately twice that of the feedforward operation.  

However, this must be repeated on every pattern until the network is suitably trained. 

  Training examples are presented to the network using either pattern or batch 

modes.  Pattern mode works by updating the synaptic weights and threshold levels after 

every example in the epoch.  Batch mode updates the weights only after all of the 

examples in an entire epoch have been presented.  Pattern mode requires less local 

storage and makes it less likely for the back-propagation algorithm to get trapped in a 

local minimum.  However, batch mode training provides a more accurate estimate of the 

gradient vector.  Simon Haykin offers some hints for increasing the performance of the 

back-propagation algorithm [Hayk94].  The tips that apply, to the network configuration 

used for this research, are outlined as follows. 

 

1. An asymmetric, hyperbolic activation function may increase the learning rate. 

2. Desired response values should fall within the range of the sigmoidal activation 

function.  If this is not done, “the back-propagation algorithm tends to drive the 

free parameters of the network to infinity, and thereby slow down the learning 

process by orders of magnitude,” [Hayk94]. 

3. The synaptic weights should be initialized so that they are uniformly distributed 

inside a small range.  This range must be carefully chosen.  If the range is too 
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large the network saturates and produces small error gradients.  If the range is too 

small, learning is initially very slow. 

4. All neurons should learn at the same rate.  This requires tweaking for each layer 

as the last layers typically have larger error gradients and learn faster. 

5. Pattern mode training tends to be orders of magnitude faster than batch mode 

training, but is harder to parallelize. 

6. As already mentioned, order of training examples in each epoch should be 

random. 

Step 2 implies that some type of normalization scheme should be applied to the 

inputs of a neural network to avoid over-saturating the neuron activation values.  

This is the basis for the use of a data transformation in this research.  Due to the 

reasoning in step 5, pattern mode learning is used in this research since it tends to be 

much faster than batch mode learning.  Constant neuron learning rate as described 

in step 4 is not used since this can be difficult to determine, especially when multiple 

hidden layers are involved. 

 

2.1.6.2  Cross-Validation and Overtraining. 

There are an unlimited number of network models.  Cross-validation validates the 

model and tests the performance of different network models.  Cross-validation is not 

used to change parameters, but to aid in choosing a network model.  Typically the data 

set is randomly divided into a cross-validation (testing) set and a training set.  About 10-

20% of the patterns are used to form a testing set that is used strictly for validation.  The 

testing set is used to 
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 “assess the performance of various candidate model structures, and thereby 

choose the ‘best’ one.  The particular model with the best-performing parameter 

values is then trained on the full training set, and the generalization performance 

of the resulting network is measured on the testing set”  [Hayk94]. 

 

Overtraining occurs when the network learns too many input-output mappings 

and memorizes the training examples.  This causes loss of generalization, the ability to 

produce the correct output even for an input never before seen.  This is similar to 

memorization in that the smooth input-output mapping is lost and replaced with a look-up 

table.  An over trained network shows poorer performance on the cross-validation set and 

the MSE rises after reaching a minimum value as seen in Figure 2.3.  The number of 

examples used for training should exceed the total number of synaptic weights divided by 

the fraction of errors permitted.   

 
Figure 2.3. Examples of mean square error for an undertrained and overtrained neural 

network. 
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Cross-validation may also be used to adjust the learning rate.  Once performance 

fails to increase by a certain amount, then the learning factor is decreased, typically by a 

factor of two.  This process repeats until there is no further improvement and training is 

then stopped.  However, this research uses a constant learning rate. 

 

2.1.7  Network Models. 

 There are several common neural models.  These models generally have a 

consistent network architecture, learning algorithm, and training method.  This section 

identifies some of the more popular network architectures and briefly expands on each. 

• Multilayered Perceptrons (MLP) 

• Radial-Basis Function Networks (RBF) 

• Recurrent Networks (includes Hopfield, Boltzmann, MFT).   

• Self-Organizing (Kohonen) 

• Modular Networks 

 

 “Mutlilayer perceptron networks are probably the most popular neural network 

architecture,” [Lisb92].  This is largely due to the back-error propagation algorithm used 

for training.  “MLPs construct global approximations to nonlinear input-output mapping.  

Consequently, they are capable of generalization in regions of the input space where little 

or no training data are available,” [Hayk94].  Multilayer perceptron networks have been 

used successfully in solving optical character recognition problems. 

 Radial-basis function networks typically only have a single hidden layer and only 

construct local approximations to nonlinear input-output sets.  This gives RBF networks 
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fast learning and less dependence on the order that the data is presented at the expense of 

memory requirements.  RBF networks also suffer the dimensionality problem and the 

number of hidden nodes increases exponentially with the size of the input space.  This is 

especially problematic in trying to solve large problems such as image and speech 

recognition.  Additionally, RBF networks require some type of prior information built 

into the design of the network.  For these reasons, RBF networks are not used in this 

research. 

 Recurrent networks are characterized by abundant feedback, symmetric synaptic 

connections, and nonlinear computing units.  The Hopfield network acts as a nonlinear 

associative memory and retrieves patterns based on an incomplete or noisy version.  The 

Hopfield network uses deterministic firing mechanisms, no hidden layers, and operates in 

an unsupervised manner.  It may suffer from spurious states and unstable memories.  The 

Boltzmann network is another recurrent network, but uses binary state neurons and a 

stochastic firing mechanism and can operate in a supervised manner.  It also permits the 

use of hidden neurons which may serve as feature detectors.  Another useful feature is 

that it avoids the “saddle point” problem through the use of a relaxation technique.  This 

technique allows the machine to continue moving downhill until a certain number of 

attempts to minimize its energy state fail.  However, the Boltzmann machine is 

computationally intensive. 

 Another type of recurrent network is the mean-field theory (MFT) machine.  It 

attempts to improve upon the Boltzmann machine by using analog neurons that use a 

deterministic firing mechanism.  In tests, the MFT machine has more memory storage 

and performs better at error-correction than any other network [Alsp92].  However, since 
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the MFT network uses only a single hidden layer, the number of applications that it is 

suitable for is somewhat limited [Hayk94].  Also, the MFT and multilayer perceptron 

networks have approximately the same performance when restricted to a single hidden 

layer and the output layer is much smaller than the input layer [Hayk94].  Since the MFT 

network seems to offer no advantages over the MLP network, and because the single 

hidden layer may restrict its usefulness, the MFT network is not used for this 

research.  

 Self organizing Kohonen networks are especially suited to modeling time-

dependant processes.  Kohonen networks use lateral connections between neurons in the 

same layer which are similar to connections in the cerebral cortex.  Kohonen networks 

create self-organizing feature maps that fall into the class of vector coding algorithms that 

optimally place a fixed number of codewords into higher-dimensional space.  This is 

useful for data compression.  As ideal as the self-organizing network seems, it does not 

fit the research task and is not used. 

 The final type of network model considered is the modular network.  Modular 

networks attempt to break computation down into pieces under the premise that it is 

easier for multiple specialized modules to specialize in certain tasks.  It is easier for 

modular networks to learn multiple simple functions rather than an entire complex 

function.  However, modularity is an additional variable and the scope of knowledge in 

this area is limited.  For this reason, a modular network is not used for this research. 

 Regardless of the model used, there is always the risk of creating an unnecessarily 

large network.  Starting with a small multilayer network and only adding new layers 

when the network cannot meet the input-output requirements is a possible solution.  
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Another approach is using a large network and then weakening or removing chosen 

synaptic weights.  However, pruning a neural network can be very computationally 

expensive as cross-validation must be used to verify that the network’s performance is 

still satisfactory after each pruning operation in addition to the added overhead imposed 

by the pruning function. 

 

2.1.8  Pattern Recognition. 

Optical character recognition (OCR) is a simple vision problem, yet is difficult for 

machines to accomplish.  A multilayer perceptron network has been used to solve this 

problem [LeCun90a].  The input layer consisted of 400 nodes – one for each pixel of the 

20x20 pixel area processed.  The system used four hidden layers and an output layer of 

ten nodes.  The ten output nodes correspond to the numbers, 0-9, recognized by the 

neural network.  In order to limit the number of free parameters, only the output layer 

was fully connected with the previous layer and weight sharing among synapses was 

used.  Weight sharing allows several synapses to be controlled by a single weight.  After 

some tweaking of the network, reject rates as low as 12-13% were achieved when 

allowing a 1% error rate. 

 Other configurations of neural networks have also tackled the OCR problem.  

Another system used a multilayer back-propagation network with four hidden layers.  

The final layer was fully connected and used shared weights.  However, the hidden layers 

were arranged to use feature maps.  The final network had a total of 4,635 neurons, 

98,442 connections, and 2,578 parameters.  After training on 30 epochs of nearly 10,000 

examples, a reject rate 1.1% was achieved while allowing only a 1% error rate.  When 
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tested with only the handwritten set, the system had a 9% reject rate.  Some of the images 

were ambiguous even to humans [LeCu89]. 

 

2.1.9  Hardware Implementation. 

Very-large-scale-integration (VLSI) hardware can realize neural networks.  VLSI 

hardware is massively parallel which works very well for neural networks.  Even as far 

back as 1990, a VLSI-based system called CNAPS (Connected Network of Adaptive 

ProcessorsS), was capable of 1.6 billion multiple accumulates per second (GMACs) for a 

25 Mhz chip.  These chips could also be used in parallel.  Training that would take about 

4 hours on a 40 MHz SUN SPARC  workstation was reduced to only about 7 seconds.  

The SUN workstation employs a RISC processor that can, at best, perform only a single 

instruction per clock cycle while a parallel VLSI implementation does not have this 

implementation. 

Current field programmable gate arrays (FPGAs) are much more powerful.  The 

latest Altera FPGA, Stratix II, is advertised to run at 370MHz and perform 284 GMACs.  

These gate arrays can also be used in parallel. 
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2.2  Wavelet Transform 

This section gives a brief review of the wavelet transform.  It is often 

advantageous to work in the frequency domain for signal processing.  The Fourier 

transform (FT) is a popular technique to transform a signal from the time domain to the 

frequency domain.  The frequency component of the Fourier transform relates to the rate 

of change.  For imagery, the frequency component corresponds to the changes in 

intensity variations.  Low frequencies correspond to smooth variations throughout the 

image while high frequencies correspond to noise and sharp changes such as the edges of 

objects. 

 

2.2.1  Fourier Transform. 

The Fourier transform reveals how much of each frequency component exists in a 

signal, but does not tell when in time those components exist.  Heisenberg’s uncertainty 

principle states that a particle’s momentum and position can not be known 

simultaneously.  This principle also applies to signal analysis.  That is, perfect time and 

frequency resolution cannot be known for the entire signal.   The Fourier transform is 

suitable for stationary (non-changing frequency) signals, but less useful for non-

stationary signals.  Almost all biological signals, such as ElectroCardioGraphies (ECG), 

ElectroMyoGraphies (EMG), and ElectroEncephaloGrams (EEO), are non-stationary.   

 The Fourier transform decomposes a signal into complex exponential functions of 

different frequencies according to the functions in Equations 2.4 – 2.6. 
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The Fourier transform of x(t): 

    2( ) ( ) j ftX f x t e dtπ∞ −

−∞
= ⋅∫     (2.4) 

The Inverse Fourier transform of X(f): 

    2( ) ( ) j ftx t X f e dfπ∞

−∞
= ⋅∫        (2.5) 

The complex exponential term can be written as a sum of sines and cosines as follows: 

    2 cos(2 ) sin(2 )j fte ft j ftπ π π= +    (2.6) 

The time at which the frequency component appears is not important because the 

integral is evaluated over all time (negative infinity to infinity).  Thus, regardless of 

where the frequency component occurs in time, the result is the same.  This is the 

fundamental reason why the Fourier transform is unsuitable for non-stationary signals. 

 Other transforms can provide both time and frequency information.  The short-

time Fourier transform (STFT) overcomes this shortcoming.  The STFT works by using 

fixed sized windows multiplied by the FT using the equation: 

 

   ( ) * 2( , ) [ ( ) ( )] j ft
XSTFT t f x t t t e dtω πω −′= ⋅ − ⋅∫   (2.7) 

 

where ω(t) is the window function and * is the complex conjugate.   

The problem with the STFT is that the windows are a fixed size for the entire 

signal and therefore usually either under or over-resolves frequency information at the 

expense of time information. 
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2.2.2  Wavelet Transform. 

The wavelet transform is a relatively new transform tool, gaining recognition in 

1987 as a new approach to multiresolution theory.  “Multiresolution theory incorporates 

and unifies techniques from a variety of disciplines, including subband coding from 

signal processing, quadrature mirror filtering from digital speech recognition, and 

pyramidal image processing,” [Gonz02].  The wavelet transform overcomes the time-

frequency resolution problem.   

The wavelet transform resembles the FT in that the signal is multiplied with some 

function. However, instead of using a complex sinusoid composed of sines and cosines 

for the frequency parameter, the wavelet transform uses a small wave (wavelet) which is 

not limited to just the sine and cosine functions.  These wavelet, or basis, functions are 

defined over a finite interval and have an average value of zero. The basic idea of the 

wavelet transform is to represent any arbitrary function, ƒ(t), as a superposition of a set of 

such basis functions.  These basis functions are obtained from a single prototype wavelet 

called the mother wavelet, by dilations or contractions (scaling) and translations (shifts).  

The wavelet coefficient value is a measure of the correlation between the wavelet and the 

signal at the current scale. 

The primary difference between the STFT and the wavelet transform is that the 

wavelet transform changes the width of the window for different spectral components.  

The wavelet transform’s major importance is its simultaneous representation of both time 

and frequency information.  The time-domain signal is passed through several high-pass 

and low-pass filters to remove those elements of the signal.  Each time this process 

repeats, some frequencies are removed from the signal.  Though not perfect, the wavelet 
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transform provides better resolution in time and frequency than the short-time Fourier 

transform.  A wavelet transform cannot determine the frequency component exactly at 

every instant of time, but can determine the frequency over an interval by trading 

frequency resolution for time resolution.  High scale (low frequency) components of a 

signal can be resolved more accurately in frequency at the expense of time resolution 

while high frequencies (low scales) can be better pinpointed in time; however, the 

knowledge of the frequency becomes less precise.  Most signals contain short duration 

high frequency components and long duration low frequency components for which the 

wavelet transform is well suited. 

Figure 2.4 presents a visual representation of this idea.  The area in each box is a 

constraint of the Heisenberg’s inequality.  Observe that wavelet analysis resolves low 

frequency better (short height box) at the expense of time resolution (wide box).  The 

signal domain has good time resolution at the expense of frequency resolution while 

Fourier analysis is just the opposite. 

 

Figure 2.4.  Time-frequency tilings of a sampled signal, Fourier analysis, and wavelet 
analysis. 
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2.2.2.1  Continuous Wavelet Transform. 

The continuous wavelet transform (CWT) “transforms a continuous signal into a 

highly redundant function of two continuous variables – translation and scale.” [Gonz02]  

This redundancy is the result of overlapping that occurs when computing every possible 

scale and translation.  The CWT is: 

 

    , ,
1( , ) ( ) ( ) ( )s s

tCWT s f t t dt f t dt
ss

ψ τ τ
ττ ψ ψ

∞ ∞

−∞ −∞

−⎛ ⎞= = ⎜ ⎟
⎝ ⎠∫ ∫  (2.8)  

where   

t
s
τψ −⎛ ⎞

⎜ ⎟
⎝ ⎠

 is the mother wavelet 

τ  is the translation (position) 

s is the scale 

1
s

is a normalization factor 

Note that using  s < 1  compresses the signal while  s > 1  dilates the signal.  The 

normalization constant is used so that each level has the same energy.  The CWT is a 

reversible transform, meaning that an inverse transform recovers the original signal. 

 

2.2.2.2  Discrete Wavelet Transform.   

The discrete wavelet transform (DWT) “provides sufficient information both for 

analysis and synthesis of the original signal, with a significant reduction in the 

computation time,” [Poli04].  Instead of computing all scales and translations, the DWT 

uses principles of subband coding to analyze the signal at different scales.  Typically 
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DWT uses dyadic (powers of two) upsampling and downsampling (subsampling) 

functions for each scale.  Dyadic subsampling drops every other sample of the signal and 

halves the number of samples for each scale.   

 A two dimensional wavelet transform is necessary to take the wavelet transform 

of an image.  A two-dimensional scaling function, φ(x,y), and three two-dimensional 

wavelets, ψH(x,y), ψV(x,y), and ψD(x,y), are required.  Each of these is the product of a 

one-dimensional scaling function, φ, and the corresponding wavelet, ψ.  This results in a 

separable scaling function and three directionally sensitive wavelets: 

   ( , ) ( ) ( )x y x yϕ φ ϕ=  Separable scaling function  (2.9) 

   ( , ) ( ) ( )V x y x yψ ψ ϕ=  Vertically sensitive wavelet  (2.10) 

   ( , ) ( ) ( )H x y x yψ ψ ϕ=  Horizontally sensitive wavelet (2.11) 

   ( , ) ( ) ( )D x y x yψ ψ ψ=  Diagonally sensitive wavelet  (2.12) 

Note that one-dimensional products were excluded from the list of equations above.  ψH 

is sensitive to horizontal edges, ψV  is sensitive to vertical edges, and ψD is sensitive to 

diagonal edges.  Equations 2.6 – 2.8 can be used to define a basic scaled function and a 

translated basic function: 

       / 2
, , ( , ) 2 (2 , 2 )j j j

j m n x y x m y nϕ ϕ= − −    (2.13) 

       / 2
, , ( , ) 2 (2 , 2 )j j j

i m n x y x m y nψ ψ= − −    (2.14) 

where index i identifies the directionally sensitive wavelet,  j defines the number of scales 

to compute, and j0 is the starting scale.   
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Finally, this allows the DWT of function f(x,y) with size MxN to be written: 

   
0
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This produces an approximation of scale j0 of the signal f(x,y) (Equation 2.15)  

Horizontal, vertical, and diagonal details for scales greater or equal to j0 can be calculated 

using Equation 2.16.  Simply put, unique subbands are produced by filtering the image 

along the rows and then along the columns.  These subbands are often referred to HH, 

HL, LH, and LL where the first letter denotes the filter function along the rows and the 

second letter denotes the filter function applied to the columns.  For example, the LH 

subband executes a low pass filter along the rows and a high pass filter down the 

columns.  This captures the horizontal edges.  Similarly, HL captures the vertical edges, 

HH captures the diagonal edges, and LL provides a course, low-resolution approximation 

of the image signal.  Figure 2.5 demonstrates a three scale (or level) wavelet transform of 

an image.  Note that Equation 2.15 above gives the  j0 = 3  scale approximation of the 

image which corresponds to the upper left block in the wavelet transform image. 

 

 Figure 2.5. Three scale wavelet transform of an image. 
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The DWT transform is often used in image processing due to some of its desirable 

properties: 

• Locality.  The wavelet coefficients contain both time and frequency information. 

• Parsimony.  A few large wavelet coefficients contain most of the image 

information.  

• Clustering.  The wavelet coefficients tend to cluster together according to their 

magnitude. 

• Persistence.  Regardless of scale, the wavelet coefficients tend to be represented 

in the same manner.  Basically, each scale displays the same image, but at a 

different resolution. 

• Multiresolution.  The signal can be analyzed at more than one resolution. 

 

Figure 2.6 demonstrates parsimony and clustering as a histogram of the values of 

the wavelet coefficients.  This graph preserves the sign of the wavelet coefficients for the 

log scaling to show how the coefficients cluster about zero.  The left graph shows the raw 

wavelet coefficients while the right graph shows a sign preserved log scaling of the 

wavelet data using the equation, log(1+|w|).  Note that most of the coefficient values are 

very small.  Image compression uses this feature by discarding these small coefficients.   

Generally, the largest valued coefficients appear at the LL subband of the highest 

scale (lowest resolution) as demonstrated in Figure 2.7.  The wavelet coefficient values 

correspond to the closeness of match of the signal and the wavelet.  The lower scales 

(higher resolution) fill in the details of the coarse approximation.   
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Figure 2.6.  Histogram display of the distribution of wavelet coefficients. 
 
 
 
 

 

Figure 2.7.  Histogram display of the distribution of wavelet coefficients for LL subband 
and across all three scales. 
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2.3  Object Recognition 

“Many biological systems use vision as their most prominent way of gathering 

information about their environment” [Faug93].  Vision is such an important and difficult 

process that half of the entire cerebral cortex in primates is devoted to processing visual 

information [Fell91].  Computer vision is a subfield of artificial intelligence concerned 

with machine understanding of images.  Often, computer vision uses explicit recognition 

in which an acquired image is compared to previously studied objects. Object recognition 

is a large part of computer vision, yet “recognition implies awareness of something 

already known,” [Kast91].   

Vision poses a difficult task as digital images are simply a collection of numbers 

that measure light intensities on a surface.  Brightness depends on an object’s shape, its 

material reflectance properties, and the light sources. 

Vision problems are often grouped together because they must overcome some of 

the same challenges.  However, object recognition is a larger problem than other vision 

tasks such as pattern recognition.  This is due, in part, to the following reasons: 

• View-dependent data must be matched with view-independent models. 

• Lighting, material, surface geometries, and camera specific parameters must 

be overcome. 

• Objects may be translated and/or rotated in three directions. 

 

Section 2.3.1 discusses some of the difficulties of object recognition in more 

detail.  Section 2.3.2 covers the general approach to object recognition. 
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2.3.1  Difficulties. 

Computer vision is a relatively new field.  Until about 10 years ago, commercial 

hardware capable of capturing and transferring full-resolution imagery at reasonable 

frame rates was not available.  This problem was further compounded by lack of 

computational power to process the imagery.  Although the mathematics were in place, 

the actual geometry of vision was not thoroughly understood.  

Computer vision is plagued by a number of difficult problems.  It is an inverse 

problem – ill-conditioned and difficult to solve without making some assumptions.  The 

information required for a given task must be determined and then extracted from a two-

dimensional image.  This two dimensional projection loses an entire dimension from the 

actual object and must later be recreated in some form.  The internal model representation 

of an object is not trivial.  Multiple representations should be used to increase 

effectiveness or a model should be used that is invariant to three-dimensional rotation and 

translation. 

Another problem is “how to discover all the information that is available from all 

the images and how to efficiently extract it through computation.” [Ma04]  This feature 

extraction process is complicated by perspective, rotation, shape, distortion, and noise.  

Radial distortion is common.  Radial distortion occurs when a short focal length is used, 

causing the straight lines in an image to curve.  Distortion and noise are limited as 

much as possible for this research. 

Lighting and reflectivity pose another problem since the machine only views an 

image as “a two-dimensional brightness array,” [Ma04].  Lambertian surfaces pose the 

fewest problems.  A Lambertian surface diffuses light uniformly in all directions and 
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does not change appearance depending on the viewing angle.  Examples of non-

Lambertian surfaces are shiny surfaces and mirrors. This research restricts models to 

Lambertian surfaces.   

Edge detection uses the principle of sharp changes in gradient to detect an edge.  

Edges come from different sources such as shadows, variations in reflectance, variations 

in texture, and variations in depth.  However,  

“the notion of a “peak” depends on the resolution of the image and the size of the 

window chosen.  What appears as smooth shading on a small patch in a high-

resolution image may appear as a sharp discontinuity on a large patch in a 

subsampled image,” [Ma04].   

Basically, changing the resolution of an image affects the appearance of edges.  Once 

edges are determined, the edges are often linked together to form a larger model.  

However, “edge linking is an extremely important, but difficult, step in image 

segmentation,” [Kast91].  An object that contains many regions that must be linked 

complicates edge linking. 

Once geometric primitive features such as lines and points have been extracted, 

the correspondence between these geometric primitives must be determined.  Most 

classical techniques can be divided into two categories: (1) local analysis such as contour 

following and (2) global analysis such as the Hough transform.  Local analysis techniques 

fail in the presence of significant amounts of noise or incomplete data, but “global 

approaches are model-driven and will miss local features,” [Omid99].  Histograms 

provide a good example of a global technique that misses local features. 



 

41 

Humans solve the correspondence problem by viewing images using a 

combination of local and global analyses.  Humans use surrounding cues, movement 

information (dynamics), neighboring structures, and naturally infer information about the 

scene even if part of the object of interest is occluded or outside of the visual field.  

However, machines are usually limited to only one type of analyses and loss of visual 

cues due to occlusion or exclusion from the image frame pose serious difficulty.  

Additionally, if a machine is only processing single, independent frames, then the 

machine has no chance to gather temporal information. The objects in this research are 

not occluded and fit entirely within the frame of the image.  

 

2.3.2  Approach. 

Vision systems typically use the following sequence to convert raw pixel values 

into meaningful object information [Kast91]: 

1. Image capture and enhancement 

2. Segmentation 

3. Feature extraction 

4. Matching of features to models 

5. Exploitation of constraints and image cues to recover information lost during 

the imaging process 

6. Application of domain knowledge to recognize objects in the scene and their 

attributes 

There are many geometric approaches, but all rely on several basic principles.  

One approach, using stereo images, is based on the epipolar constraint, in which two 
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image rays corresponding to the same three-dimensional point are coplanar.  Another 

approach is the use of parallel lines as demonstrated in Figure 2.8.  Yet another approach 

relies on perspective and vanishing points as pictured in Figure 2.9. 

 

Figure 2.8.  Parallel and orthogonal lines in an image. 
 

 

Figure 2.9.  Vanishing point in an image. 
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Low-level vision tasks include segmentation and boundary detection.  These are 

necessary before conducting high-level vision tasks such as recognition and motion 

analysis.   

Segmentation involves isolating objects of interest in an image and is often done 

either using edge detection or by methods that group pixels according to certain 

similarities.  Similarities such as spatial proximity and intensity similarity can be used.  

However, domain knowledge must be applied since these are rarely consistent across an 

object.  Intensity variations occur in a wide range of scales for natural images.  Edge 

techniques are impaired by noise and intensity changes across an image.   

The geometry is well understood for projecting geometric primitives, such as lines 

and points, onto an image plane.  However, the inverse problem of extracting geometric 

primitives from an image is difficult because extracting these geometric primitives is 

usually done using local analysis.  Local analysis only examines a small portion of the 

image at a time, rather than the large global picture.   

Corner detection and optical flow (motion feature tracking) are two methods that 

rely on point features.  Another point feature method uses epipolar geometry.  Epipolar 

geometry uses multiple viewpoints of the same scene to project a point along with two 

camera optical centers to form a triangle.  Using multiple points in the image allows the 

calculation of the camera poses and the three-dimensional position of the points. 

Line features use techniques such as line fitting or connected component analysis.  

Often, the Hough or radon transform is used for these techniques.  Basically, after edge 

detection is done, these transforms “connect-the-dots.”  Line features are useful because 

man made environments usually have orthogonal and parallel lines. 
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After extracting primary features from an image, additional object recognition 

problems are faced.  The first problem is dimensionality.  Dimensionality refers to the 

idea that one or more dimensions dominate the geometry of an object.  For example, a 

high tension wire is one-dimensional while a sheet of paper is two-dimensional.  Another 

problem is that the object of interest may be occluded, or partly obscured.  This means 

that even fewer object features can be extracted from the image.  Finally, the rigidity of 

an object may affect its shape.  Deformable objects must still be correctly identified 

regardless of their current shape.  The objects used in this research are all three-

dimensional and rigid. 

Representation schemes keep only the main features of an object.  Object 

recognition involves matching this representation to models of known objects.  Some 

approaches for representing models are the use of bounding curves, feature matching, and 

region-based descriptors, such as textures.  Feature matching uses distinguishing features 

such as corners, inflection points, and curvature discontinuities.   There are many 

different schemes for representing three-dimensional objects.  Some examples are wire-

frame, constructive solid-geometry, surface boundary, and surface representations.  This 

research relies on the neural network to internalize the object representation from 

training examples. 

Invariance is an important property for eliminating instability (dependence on the 

coordinates of features).  Invariants are algebraic or differential.  Algebraic invariants 

include angles and distances and can be defined on more than one feature.  This increases 

stability, but as the number of algebraic invariants increase, a larger number of features 

are required to define the invariant.  Additionally, this increases the complexity of 
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matching to internal object models.  Differential invariants include curves and surfaces.  

Differentials are more immune to occlusion problems, but this comes at the cost of 

complexity because they are computed from derivatives.  As the complexity of a 

transformation increases, higher order derivatives are required which lead to instability. 

 Application of domain knowledge increases the effectiveness of the machine 

vision system.  Domain knowledge is a large factor in the success of human vision, yet 

also accounts for why human vision can be easily misled.  Figure 2.10 shows an example 

of applied domain knowledge.  Experience leads most people to believe that only a 

single, continuous line passes through the box while in fact there are two offset, parallel 

line segments. 

 

Figure 2.10.  The line appears continuous due to applied domain knowledge. 
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2.4  Summary 

 The information presented in this chapter heavily influenced the methodology 

chosen for this research.  The neural network model and formation of the object image 

database are both determined by information found in this chapter. 

 Neural networks (NNs) form an artificial intelligence system that is modeled after 

the nervous system.  Neural networks can solve complex problems and problems that are 

difficult to formulate.   

In Section 2.1 neural networks are discussed.  Section 2.1 also highlights selections 

regarding the neural network model used for this research.  The following list outlines 

these decisions.  The section(s) discussing the decisions are provided. 

• General network architecture: A fully-connected, feedforward, multi-

layer perceptron network using two hidden layers. (Section 2.1.4) 

• Training method:   Supervised back-propagation (Section 2.1.4, 2.1.5.1 -  

2.1.5.3, 2,1,6,1) with pattern mode learning (2.1.6.1) 

• Optimizations:   Weight jogging (97% - 102%) (Section 2.1.6.1) with a 

constant learning rate (2.1.6.2) 

• Network architectures considered and discarded: 

Recurrent networks (Section 2.1.4) 

   Radial Basis Function (RBF) networks (Section 2.1.7) 

   Mean Field Theorem (MFT) networks (Section 2.1.7) 

   Self-organizing network (Section 2.1.7) 

   Modular network (Section 2.1.7) 
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 Section 2.2 discusses the basic properties of the wavelet transform, especially as 

applied to imagery.  Also, the distribution of the values of the wavelet coefficients is 

discussed. 

 Object recognition is the topic of Section 2.3.  The basic principles of machine 

vision are discussed as well as the fundamental difficulties.  Finally, a generalized 

approach is discussed.  Through Section 2.3 specific references regarding object 

recognition as used in this research are mentioned.  These references are listed below 

along with the section in which they are located. 

• Distortion and noise in images is limited as much as possible (Section 

2.3.1) 

• Only Lambertian surfaces are used to texture models (Section 2.3.1) 

• Objects are not occluded and fit entirely within the image frame (Section 

2.3.1) 

• Objects are clearly three-dimensional (Section 2.3.2) 

• Objects are rigid (Section 2.3.2) 

• The neural network autonomously internalizes object representation 

models (Section 2.3.2) 
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III. Methodology 

3.1  Approach  

This chapter describes the methodology to meet the following goals: 

1. Determine if the wavelet transformation is an efficient time and space pre-

processor to a neural network for object recognition. 

2. Determine which data scaling, if any, increases the success rate. 

3. Determine which neural network topology proves the most successful. 

4. Determine if the multiresolution aspect of the wavelet transform increases the 

success of the neural network. 

To answer these questions, the following general process is followed: 

1. Creation of an image database.  An image database is created for eight 

objects in this research to provide training and testing sets for the neural 

networks.  This is described further in Section 3.7.1.   

2. Wavelet transformation of each image.  A Daubechies (7,9) wavelet transform 

is performed on each image.  Each subband forms a separate pattern set that is 

used for the corresponding subband’s neural network.  This is described 

further in Section 3.7.2.   

3. Scaling of the resultant wavelet transformed data.   After the wavelet 

transform, the resultant data is rescaled using several different methods before 

processing with the neural network.  This is described further in Section 3.7.3.   

4. Determine optimal topology and data transform.   Cross-validation is used to 

determine the optimal data transform and neural network configuration.  
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Different neural network topologies are tested for each subband.  

Additionally, each set of the rescaled coefficients from the previous step is 

tested for each of the neural networks.  This is described in more detail in 

Section 3.7.4.   

5. Final training of the neural networks.  The variability charts from the 

previous step are examined and the best network topology and data transform 

selected.  Further testing is conducted with several random seeds to obtain the 

“most average” trained network for each subband.  This is described further in 

Section 3.7.5.   

6. Testing of the trained neural networks.  The CAD (computer aided design) 

testing set and the photo sets are tested with the trained networks.  

Additionally, the photo images most closely matching CAD model images are 

selected, cleaned, and tested.  This is further described in Section 3.7.6.   

7. Correlate the outputs of the subband networks.  The three separate networks, 

one for each subband in a level, are used to form a larger neural network.  The 

outputs of each of the subband networks serve as inputs into the larger 

network.  This new network must also be trained.  This is further described in 

Section 3.7.7.   

8. Testing of the final network.  The final, trained large network is tested.  This is 

described further in Section 3.7.8.   

Additionally, another test not included in this sequence is run to compare the system’s 

performance against a benchmark system that uses a single large neural network that 

processes the unmodified image patterns.  Some simple tests are also run to examine the 
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performance of the selected network and scaling from step 4 above when using only 

photo pattern sets.  These tests are further described in Section 3.7.9. 

 

3.2  System boundaries and Overview 

  The system under test is an image correlation system that classifies an input 

image of an object for which it has been trained.  It consists of several components: the 

wavelet transform, the scaling function, and the neural network.  The feedback/training 

system for the neural network is part of the neural network component.  Figure 3.1 shows 

a simplified model of the system. 

 

 

Figure 3.1.  Simplified model of the image correlation system. 
 

 The Daubechies (7,9) wavelet transform is conducted on each of the images in the 

image database.  Rescaling of the transformed image reduces the training time of the 

neural network as described in Section 2.1.6.1.  The neural network uses the back-

propagation training method which operates in a supervised learning mode.  The neural 

network must be pre-trained on all of the objects for which it is required to classify.  

However, once the training of the network is complete, back-propagation is no longer 

required.  The output layer of the neural networks consists of eight nodes, one for each 

Success 
Rate 

Image 



 

51 

classification category.  A selection among these eight nodes is made and compared to 

the desired output to decide if the object has been correctly classified.  The ratio of 

correct decisions to the total patterns in the set forms the success rate for a pattern set. 

 

3.3  System Services 

  The system provides a single service.  This service is a success rate.  There are 

two possible outcomes: successful match and failed match.  For this system, success is 

recorded when the system correctly identifies the object in the image.  Failure occurs 

when the object is misidentified.  Most detection systems also have false positive and 

false negative outcomes. However, for this research, the data set is constrained so that all 

images contain an object for which the neural network has been trained.  This eliminates 

any false positive or false negative outcomes.  

 

3.4  Performance Metrics 

  There are two primary metrics for this system: (1) percent of objects correctly 

identified (success rate) and (2) mean square error rate.  These metrics are chosen to 

compare the post-wavelet data transforms and network topologies and gauge the 

performance of the system. Mean square error is not used to determine the success of the 

system.  It is an internal metric used only to help determine when the neural network is 

satisfactorily trained as explained in Section 2.1.5.2. 
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3.5  Parameters 

 The parameters list all the possible variables that must be considered.  Each 

parameter has some impact on the system’s performance. 

 

3.5.1  System Parameters.   

  Each component of the system has several parameters.  The wavelet transform 

component has many possible parameters.  The post-wavelet transform has a single 

parameter (i.e., which transform function to use, if any).  The neural network contains the 

most parameters.  The neural network is considered in two parts, the architectural aspect 

and the learning mechanism.   

 The wavelet component has two parameters, the wavelet function and the number 

of decompositions. The number of decompositions determines the number of subbands 

created and therefore the number of neural networks required.  Additionally, the wavelet 

algorithm determines how those coefficients are calculated.  These parameter variations 

affect the performance of the neural network in an unknown way since the effects are 

difficult to determine due to the complex nature of neural networks.   

The neural network architecture has many parameters that affect its performance 

in undetermined ways.  Some of the architectural parameters are (1) the type of neural 

network, (2) number of layers, (3) number of neurons in each layer, (4) connectivity, (5) 

activation (firing) function, (6) the neuron updating model, and (7) the winner selection 

scheme.  These all affect performance.  Section 2.1.4 explains that increasing the number 

of hidden layers may help the neural network to generalize at the expense of increasing 
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training time and instability.  The winner selection scheme determines the way in which 

the network outputs are interpreted.  

The learning mechanism for the neural network also has several parameters.  

Some of these learning mechanism parameters are the learning method, learning rate, and 

synaptic weights initializations.  The learning rate must be set low enough to maintain 

stability while still permitting the neural network to learn at an acceptably fast rate.  

Synaptic initialization values can significantly affect the performance of the neural 

network. 

Additionally, there are several parameters for presenting data to the neural 

network.  The number of samples per epoch, number of epochs, order that the samples 

are processed in each epoch, stopping criteria, and random weight jogging are additional 

parameters.  These parameters affect the training of the neural network which determines 

the performance of the neural network.  Generally, the more samples used for learning, 

the better the neural network performs.  However, overtraining can result in poor 

performance.  Section 2.1.6.1 lists some criteria for network convergence.  Weight 

jogging is a scheme in which the weight values are randomly “jogged” by a small amount 

after each training epoch, usually within several percent of their original values.  This has 

been noted to help a neural network get past local minima [SNNS].  

 To summarize the system parameters: 

• Wavelet: 

o Wavelet function 

o Levels of decomposition 

• Scaling Function 
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• Neural network (architecture) 

o Type of neural network 

o Number of hidden layers 

o Number of neurons in each hidden layer 

o Connectivity 

o Activation (firing) function 

o Neuron updating model 

o Winner selection scheme 

• Neural network (feedback/training) 

o Learning method 

o Learning rate 

o Synaptic weights initializations 

o Samples per epoch 

o Number of epochs 

o Order of presentation of samples 

o Stopping criteria 

o Weight jogging 

 

3.5.2  Workload Parameters. 

  The workload for this research is the individual images, not the way in which they 

are grouped or processed.  The workload has the following possible parameters: 

• Number of objects 

• Image model (real-life model / CAD model) 
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• Size of images (resolution in pixels) 

• Bit depth (color / grayscale) 

• Noise (background / object) 

• Rotation angle of model 

• Elevation angle of model 

• Scale of the model within the image 

 

The workload parameters affect all aspects of the system.  The number of objects and 

the number of images per object affect the overall size of the image database that must be 

constructed.  However, there must be enough object examples in order to properly train 

the neural network. 

Simple geometric blocks are used for the object models.  Images of these models are 

captured from a CAD program and from photographs of real-life models.  The CAD 

images represent the ideal case with minimal noise and no shadows that may hamper the 

performance of the neural network.  

Image resolution must be sufficient so that important details such as edges and 

corners can be recognized and detected by the system.  Higher resolution images result in 

larger matrices of wavelet coefficients.  This may increase the performance of the neural 

network since it has better resolution to identify the interesting features (edges and 

corners), however, the added computational complexity of the neural network quickly 

limits the size.  Higher bit-depth images may provide the neural network with more 

information to successfully match objects, however this comes at the cost of added 

computational complexity.  Background noise and shadows in the real-life model images 
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may “distract” the neural network, decreasing performance or may actually provide 

additional information 

The quality of the images, brightness, and contrast likely affect performance because 

sharper images exhibit more distinct variations in the wavelet coefficient matrix.  The 

CAD models are surfaced with various textures to reduce the chance of the neural 

network keying on a particular surface feature. 

The rotation angle and elevation angle determine how the object appears in the image.  

Both rotation and elevation angles have unlimited possibilities as the object may be 

rotated by any arbitrary amount.  Distance from the object is also a factor as this affects 

the scale of the object’s appearance in the image.     

 

3.6  Factors 

  The factors are carefully selected from the parameters to limit the scope of the 

research.   

 

3.6.1  System Factors. 

The wavelet decomposition employs a three level Daubechies (7,9) tap wavelet.  

Three decomposition levels are commonly used in image processing and provide subband 

matrices small enough to be handled by the neural network.   

The neural network parameters are selected to maximize performance of the 

neural network.  As mentioned in Section 2.1.7, feedforward, multilayer perceptron 

networks with two hidden layers have been used successfully for other image processing 

applications.  Additionally, two hidden layers provide reasonable training times and 
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stability.  More hidden layers often require significantly longer training times before the 

network settles.  Back-propagation provides an efficient training method for this type of 

network.  Therefore, a fully connected, feedforward, multilayer perceptron neural 

network with two hidden layers is used for this research.  Back-propagation is the 

selected method of training. 

Most of the feedback and training parameters for the neural network use the 

default methods provided by the SNNS (Stuttgart Neural Network Simulator) which is 

the neural work tool used for this research.  SNNS employs, by default, the most 

favorable settings for the selected network. The synaptic weights are initialized to small 

distributed random values between -1 and 1 as suggested in Section 2.1.6.1.  Pilot studies 

show that a value of 0.50 allows the network to train reasonably fast without introducing 

excessive instability. 

The winner-takes-all selection scheme determines the classification made by the 

neural network.  Winner takes all is a simple method that is often used for classification 

problems.  The output node with the highest output value is selected as the winner.  

However, a weakness of this method is that the network does not indicate if the output 

values are close in value. 

The data set determines the number of samples per epoch and the stopping criteria 

determines the number of epochs processed.  The point at which training is considered 

complete is a function of the testing set mean square error, the training set mean square 

error, and the success rate.  These criteria were specifically developed for this research 

project.  Section 3.7.6 discusses the details of the stopping criteria.   
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Randomly shuffling the patterns after each epoch eliminates the order of 

presentation of samples as a factor.  Weight jogging was specified to be within -5% to 

+2% of the original values so that the cumulative effect of jogging will slightly change 

the overall weight values.  Jogging is performed before each epoch is processed for 

training.     

To summarize the factors chosen: 

• Wavelet: 

o Wavelet function: Daubechies (7,9) 

o Levels of decomposition: 3 

• Scaling function: none, linear, log, both 

• Neural Network (Architecture) 

o Type of neural network: multilayer perceptron 

o Number of hidden layers: 1 or 2 

o Number of neurons in each layer 

 Input: determined by size of subband matrix 

 Hidden layer 1: 64, 128, 256 

 Hidden layer 2: 0, 16, 32, 64, 128 (if 0, then no hidden 2 layer) 

 Output: 8 (equal to the number of objects) 

o Connectivity: fully connected, feedforward 

o Activation (firing function): logistic  

( ( ) )
1( )

1 j jj net ta t
e θ− +=

+
     (3.1) 

o Neuron updating model: topological order 
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o Winner selection scheme: winner takes all (WTA) 

• Neural Network (feedback / training) 

o Learning method: back-propagation (supervised) 

o Learning rate: 0.5 

o Synaptic weight initializations: randomly distributed values between -1 

and 1 

o Samples per epoch: determined by number of patterns in each pattern set 

o Number of epochs: determined by stopping criteria 

o Order of presentation of samples: randomly shuffled after each training 

epoch 

o Stopping criteria: based on training set MSE, testing set MSE, and success 

rate (see Appendix E) 

o Weight jogging: Performed before every training epoch, -5% to +2% of 

original values 

.   

3.6.2  Workload Factors. 

Workload factors selected present the system with a wide range of possible inputs 

and determine the system’s performance under different conditions.  All of the photo 

images are of good quality, have little noise, and have good contrast and brightness.  The 

CAD images are artificially generated and are excellent quality images with no noise and 

superb contrast and brightness. 

Eight objects are used to test the performance of the system.  These objects were 

modeled from toy blocks due to their geometric simplicity and availability for real-life 
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photographs.  The CAD models are surfaced with four different textures in an effort to 

prevent the neural network keying on any particular surface feature.  The CAD modeled 

objects using a smooth surface are pictured in Figure 3.2.  Images of the real-life models 

of the corresponding models are shown in Figure 3.3.   

 

 

Figure 3.2.  Smooth textured CAD models of the objects used in this research. 
 

 

 

Figure 3.3.  Photos of the real-life models. 
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The CAD model and real-life model of the triangle model differ slightly (bottom 

row, second from left) in order to test the generalization of the network.  However, as the 

two models are the most similar of the eight, system performance should not be 

significantly impacted.  If performance is impacted, it would only be for objects that 

should be classified as this triangle. 

The implementation of the wavelet transform used in this research requires the 

image size be a power of two in both dimensions.  Resolution of the images is limited to 

128x128 pixels.  Pilot studies using 256x256 images demonstrate that training time of the 

neural network was too long for this research effort.  Using 128x128 pixel images and 

taking 3 wavelet decompositions yields pattern sizes as small as 256 inputs (16x16) and 

as large as 4096 inputs (64x64).  This restriction of image size is applied to both CAD 

and photograph images.  All images are converted to 8-bit grayscale to further reduce the 

number of neural network inputs.  True color (24-bit) images would require three times 

as many inputs since each color plane would have to be represented.  

Every attempt is made to photograph the real models as distinctly as possible 

without adding background noise.  This is done by using a plain white background and 

bright overhead lighting.  Shadows are a problem in the photographed model set and may 

impact system performance.  The CAD models are surfaced with four different textures 

as shown in Figure 3.4 to reduce the chance of the neural network keying on a particular 

surface feature.  One of the surface textures chosen was a wood-grain pattern very similar 

in texture and color to the photographed model.  

In both the CAD and photo sets, the object are rotated about one axis and 

approximately 20-25 images are captured per full rotation.  The elevation angle is also 
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varied, but remains above the base plane so that the bottom of the object is never 

visualized in any of the images.  Four different elevation angles are used.  Duplicate and 

difficult images are discarded.  Difficult images are those in which a human has a 

difficult time properly classifying the object or images in which only a single face of the 

object is seen.  The final result is 377 photographed images and 2151 CAD model 

images.  Since training occurs only with the CAD images and testing with the photograph 

images, it is acceptable that the number of CAD images outnumber the photographed 

images. 

 

 

Figure 3.4.  Textures used to surface CAD models. 

 

The image sets are divided up into a testing set and a training set.  Usually 10-

20% of the total data set is used for cross-validation (the testing set) in order to evaluate 

the performance of the network model as described in Section 2.1.6.2.  For this research, 

testing sets consist of approximately 10% of the total available patterns that are randomly 

selected.  

 Scale is a difficult factor to control for the photo set.  Keeping the object centered 

as the object is rotated is problematic.  The camera zoom must be adapted as each 

1 
Texture 1 

Paper 
Texture 2 

Wood 
Texture 3 
Concrete 
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photograph is taken so that the object fills the frame as entirely as possible without 

extending outside of the frame. 

To summarize the workload factors:   

• Number of objects: 8 

• Image models: CAD and real-life models 

• Resolution of images: 256x256 pixels 

• Bit depth: 8-bit grayscale 

• Noise in background and/or area surround target: All objects are 

photographed on a uniformly blank background.  Four different textures 

are used on the CAD models. 

• Rotation angle: For CAD models, approximately 20-22 images per 

elevation angle per texture for each object.  For photographed models: 8 

for each elevation angle for each object. 

• Elevation angle: 4 per object 

• Scale: object fits within image frame 

 

3.7  Approach in Detail 

 This section expands on the brief overview presented in Section 3.1. 

 

3.7.1  Creation of an Image Database. 

Images of objects used for this research are modeled from real-life objects.  The 

object models are measured and a CAD model created for each object with the exception 

of the isosceles triangle as noted in Section 3.6.2.  The models are textured with four 
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different textures (pictured in Figure 3.4) to prevent the neural network from keying on 

any particular surface feature.  Light sources are added to the three-dimensional view and 

the object is rotated about a single axis.  Approximately 20-25 images are captured as the 

model is rotated.  After each full rotation of the object, the elevation angle is changed and 

the object rotated again.  This process repeats for each of the four textures. 

IrfanView, a freeware image processing program for the Microsoft Windows 

platform, is used to perform the image captures and other image manipulations [Irfan03].  

Image captures were initially 520x520 pixels to fully capture the window area in the 

CAD program.  After the image capture, the images are rescaled to 128x128 pixels using 

a Lanzcos filter.  Finally, the images are converted to 8-bit grayscale.  Due to the 

necessity of capturing a square image so that the rescaling function would not distort the 

image, some of the surrounding window was also captured.  This “noise” is removed as 

the pattern files are created and replaced with the background color.     

Photographs of the model objects are taken to form a testing set.  The object is 

placed on a large table with good overhead lighting and a white background.  A tripod-

mounted, remotely activated, digital camera is used to take all photographs.  The tripod 

and remote prevent camera shake which causes blurry images.  The camera is equipped 

with a LCD (liquid crystal display) that displays the current frame which ensures that the 

model fits within the frame of the image. 
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3.7.2  Wavelet Transformation of Each Image. 

 The Daubechies (7,9) tap wavelet is used for the discrete wavelet transform.  The 

Daubechies (7,9) wavelet transform uses the nine low-pass, decomposition filter 

coefficients listed in Equation 3.2 and the seven high-pass, decomposition filter 

coefficients listed in Equation 3.3. 

0.03782845550726
0.02384946501956
0.11062440441844
0.37740285561283
0.85269867900889
0.37740285561283
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The Z-transform equations of l and h can be written as in Equation 3.4. 

1 2 8

1 2 6

( ) (0) (1) (2) ... (8)

( ) (0) (1) (2) ... (8)

L z l l z l z l z

H z h h z h z h z

− − −

− − −

= + + + +

= + + + +

   (3.4) 

Convolving the rows and columns of the image with the appropriate decomposition filter 

coefficients, l and h, generates the wavelet coefficients for the first scale.  For example, 
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to create the LL subband of coefficients, the rows of the image would be convolved with 

l and then the columns.  LH would require the rows be convolved with l  and the columns 

with h.  Each scale is created by zero padding l and h (i.e., inserting a zero every other 

row).  

The Daubechies (7,9) wavelet transform used in this research is based on a lifting 

scheme created by Wim Sweldens.  This lifting scheme yields the same results, but is 

computationally more efficient.  The code used in this research was written by Roger 

Claypool [Clay99]. An inverse wavelet transformation of the wavelet transform verifies 

that the original image is recovered. 

Daubechies (7,9)  is used because it is a biorthogonal wavelet, is pre-existing, and 

is widely accepted for image processing.  Daubechies (7,9) is so widely used in image 

processing that it is part of the JPEG2000 standard.  Details of the design and 

implementation of other wavelets is beyond the scope of this research.   

 

3.7.3  Scaling Function. 

 The wavelet transformed results are rescaled in the data scaling component.  The 

scaling function operates independently on each subband of the wavelet transform.  

The four possible scaling functions are as follows: 

 

• None.  No rescaling is performed and the wavelet coefficients are used “as 

is.”  Each value is rounded to the nearest integer. 
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• Linear.  The wavelet coefficients are normalized between -1 and 1 using 

the formula  

 ( ) ( ) /( ( ) ( ) )MAX MINf x f x f x f x= −     (3.5) 

Each value is rounded to the ten-thousandths place. 

• Log.  The log transformation in Equation 3.6 is used, but sign is preserved. 

  ( ) log(1 ( ) )f x f x= +  for each element of f(x)   (3.6) 

Each value is rounded to the ten-thousandths place. 

• Both.  The log transform is performed and then linearly normalized.  Both 

transforms are the same as those described above.  Each value is rounded 

to the ten-thousandths place. 

 

Rounding of the data values is necessary to ensure that the patterns are compatible with 

SNNS, to maintain smaller file sizes, and because nothing is gained by the extra 

precision.  Typically, the raw wavelet coefficient values in each subband are on the order 

of ±103.   

It is worth noting that the log transformation most closely follows the naturally 

exponentially distributed wavelet coefficient values.  Linear normalization was used to 

scale the wavelet coefficients between -1 and 1 to avoid saturating the neuron activation 

values as explained in Section 2.1.6.1.  However, due to the distribution of the wavelet 

coefficient values, linear normalization causes most of the values to be very close to zero, 

especially after values are rounded to the ten-thousandths place. 



 

68 

 The results of these steps yields four patterns sets for each subband.  Figure 3.5 

displays the role of the data transform in the creation of the pattern sets for the neural 

network. 

 

 

Figure 3.5.  Creation of the pattern sets. 
 

3.7.4  Determine Optimal Neural Network Topology and Data Transform. 

 Neural networks for each subband are created using the ff_bignet tool that is 

included in the SNNS package.  Fully connected, feedforward networks are created for 

each scale (256 inputs, 1024 inputs, and 4096 inputs).  All networks have eight outputs, 

one for each object for which the network is trained.  Pilot studies are conducted using 

128 or 256 nodes in the first hidden layer and 0, 32, 64, or 128 nodes in the second 

hidden layer.  Pilot studies conducted prior to this research revealed that the networks 

took an excessively long time to train when the first hidden layer contained 256 nodes.  

Also, the performance of the networks is significantly lower without a second hidden 

layer. Therefore, all tests are run with 128 nodes in the first layer, and 32, 64, or 128 

nodes in the second hidden layer.  Throughout this research, these networks are referred 
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to as 128-32, 128-64, and 128-128 where the first number is the number of nodes in the 

first hidden layer and the second number is the number of nodes in the second hidden 

layer. 

 After performing the wavelet transformation and data scaling on each image in a 

set, the set of patterns are used to train or test the network.  An autonomous neural 

network which is independently trained and tested processes each subband in each level.  

Training is conducted by randomly shuffling the patterns in a set and processing the 

patterns one at a time until that epoch is finished.  The patterns are then reshuffled and 

the process repeated until training is complete. 

 The neural network operates in a supervised manner and requires external 

feedback so that it can learn what constitutes success and failure.  The back-propagation 

training method is the teaching method used to train the neural network.  Each network 

for each subband is trained with each of the data transformed patterns at least four times 

using different random seeds for initialization and weight jogging.  The networks are 

trained with the training set of patterns that consist of 90% of the total number of patterns 

and tested with the remaining 10% after every five training epochs.  The networks are 

never permitted to train on the testing sets.  These sets are used only for validation and 

gauging the network’s performance.  

 Training is conducted for 120 training epochs which is more than sufficient to 

fully train the network as pilot studies show.  Mean square error is recorded after 

processing every training or testing epoch.  After conducting a test epoch, the 

classification is determined using a winner-take-all strategy on the outputs.  This allows 

computation of the success rate. 
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3.7.5  Results of Trial Networks. 

 A variability chart is created using the statistical software package, JMP v5.  This 

allows for easy visual analysis to determine the best transform and network topology for 

each subband.  Detailed statistical analysis is not conducted for this step as the goal is 

only to approximately determine the best performer. 

 The selected network topology is trained using the selected data scaling using a 

different random seed each time.  An “average performer” is chosen as the final trained 

network.  This is done to avoid using a network with an unusually favorable or poor 

performance.  Also, the trained networks are more easily reproduced even if a different 

random seed is used. 

   As the average performing network runs, statistics including the success rate and 

the mean square error (MSE) for both the training set and the testing set are generated.  A 

cubic spline model is fit to the MSE data using MATLAB.  Starting at the first epoch, the 

training MSE and test MSE models are examined.  Once the values for these two 

statistics drop and begin to level off, then the statistics for the success rate are examined.  

The network is considered fully trained once the average success rate for 10 samples is 

within 1.5% of the average of the remaining values through the 120th epoch.  Figure 3.6 

shows a basic representation of this process. 

 The network is only saved after every five training epochs due to the increased 

time and space that saving the network requires.  Therefore, the next highest network 

save state is used for the final trained network for that subband (i.e., if the network is 

fully trained after 62 epochs, the network is saved after the 65th epoch is processed). 
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Figure 3.6.  Determination of a neural network’s “trained epoch” (the epoch at which the 
network is fully trained). 

 

  

3.7.6  Testing of the Trained Neural Networks. 

 Each subband network is tested with the CAD testing set and the set of photo 

images.  Additionally, the CAD testing set is compared to the photo image set.  Thirty-

three (33) of the photo images that most closely match a CAD model are selected to form 

the good photo set.  Rotation angle, elevation angle, and the scale of the object in the 

frame of the image determine these selections 
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3.7.7  Create a Network Composed of the Individual Subband Networks. 

 The three separate subband networks in each level are used to form a larger 

“glue” neural network that correlates the outputs.  The outputs of each of the subband 

networks serve as inputs into the larger network.  Each of these new level networks is 

trained. 

 Three different architectures for the glue networks are created and tested.  Figure 

3.7 shows the correlating neural network.  This network connects the corresponding node 

from each subband network.  The other two architectures are fully-connected so that 

every output node from every subband network is connected to each node in the next 

layer.  One of these two networks uses an eight node hidden layer between the subband 

network outputs and the final 8 node output layer.  The other fully-connected network 

does not have a hidden layer, but connects the outputs of the subbands directly to the 

computational output layer. 

 Fifteen “glue” networks are tested in this manner.  The three architectures 

described in the previous paragraph are used to connect the subbands in the following 

levels: 

• Level 1 

• Level 2 

• Level 3 

• Level 2 and 3 

• Level 1, 2, and 3 
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Figure 3.7.  Large correlating network connecting the subband networks. 
 

 

3.7.8  Testing of the Final Network. 

 The final trained networks consisting of the three smaller networks are tested and 

compared to the performance of the individual subband networks.  The same testing sets 

used for the subband networks are also used for the large glue networks. 

 

3.7.9  Additional Verification Tests. 

 Several additional tests are run to evaluate the performance of the selected 

network topologies and data transforms when trained and tested on only photo sets.  The 

same 90-10 scheme (90% used for training, 10% for testing), is used to split the photos 

into two sets of patterns.  Due to the amount of computational time, only the level 2 and 
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level 3 subband networks are trained and tested.  However, 10 runs are performed with 

different random seeds to account for random variations. 

 Another test is performed to gauge the performance of a neural network on the 

non-transformed spatial images.  A large fully-connected neural network is created and 

trained on the CAD training set.  Testing is conducted using the CAD testing set.  The 

network consists of 512 x 512 = 16,384 inputs, 512 nodes in the first hidden layer, 128 

nodes in the second hidden layer, and the usual 8 nodes in the output layer.  Due to the 

huge computational requirements of this network, only a single run is performed.   

 

3.8  Evaluation Technique 

 The evaluation technique used is the measurement of a real system.  This system 

did not exist prior to this research; however, the wavelet transform code and the SNNS 

tool did exist.  The scaling function component and the algorithm to determine when the 

network is fully trained were created for this research.  The wavelet component used in 

this research is explained in more detail in Section 3.7.2.  The neural network is created 

and modeled using SNNS, a widely employed neural network modeling program.   

Real images are used as a workload.  Since the images are modeled after one of 

the eight models the system was trained on, there are no unknown inputs.  This allows 

comparison of the output of the system to the desired output.   

 

3.9  Experimental Design 

 A full factorial design is run for each neural network topology and data transform 

for each subband.  Therefore, each topology of each subband neural network uses each of 
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the four post-wavelet data transformations.  Each of these training sessions is run at least 

four times with a different random seed to account for random variations during 

initializations and weight jogging.  Since there are four data transforms, three network 

topologies, and all variations are run four times with different random seeds, 4 x 3 x 4 = 

48 experiments are conducted to determine the best data transform and network topology 

for each subband.  After training, each of these nine selected subband networks is tested 

with testing sets.  Each subband is considered independently. Additionally, several large 

networks composed of the smaller subband networks are tested. 

The wavelet transform and data scaling function always provide the same output 

for a given input and do not need to be considered in the factorial design.  The order of 

presentation of patterns to the neural network also does not need consideration since they 

are randomly selected after each training epoch.  The training process runs enough of 

these randomly shuffled epochs that these variations should be significantly reduced.  

Additionally, this factor is encompassed by using different random seeds.  Ultimately, the 

mean square error of the training set and the testing sets should become stable as the 

neural network “learns” from experience and reaches a steady state.  

One of the primary goals of this research is to determine if the multiresolution 

aspect of the wavelet transform is exploitable.  To achieve this goal, separate neural 

networks for each subband are created and the outputs correlated using a larger network.  

Measurements are taken of both the individual subband networks and the larger 

correlating networks using testing sets.  Since the feedforward process of a neural 

network is deterministic, multiple runs are not required.  The testing sets only need to be 

run a single time to determine their success rates. 
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3.10  Analyze and Interpret Results 

  The data gathered consists of 432, four-valued sets, one set for each variation of 

subband, network topology, data transformation, and random seed.  Each set contains the 

following information: 

• Epoch at which the network is fully trained (“trained epoch”) 

• Training set MSE 

• Testing set MSE 

• Success rate 

The trained epoch, training set MSE, and testing set MSE data values are not used to 

gauge the performance of the system, but only to ensure that fully trained, stable 

networks are considered.   

The interaction between factors is not calculated, because this research is 

concerned only with choosing the best performing network topology and scaling 

function.  An example table used to collect data values is shown in Table 3.1.  A table is 

constructed for each of the data types (trained epoch, trained MSE, test MSE, and success 

rate).  Four tables are created for each subband. 

This system is affected by the random initialization state of the neural network 

and the random jogging that occurs after each training epoch.  Also, very small variations 

in any parameter have an undetermined affect on the output. 

 

3.11  Summary 

This research creates an image classification system using a wavelet transform, scaling 

function, and a neural network.  Neural networks are used because they are ideal for 
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solving non-linear problems and other problems in which a formula cannot be 

determined.  Also, prior research efforts have successfully used neural networks to solve 

difficult problems. 

 

Table 3.1.  Example data collection table for success rate for level 3, subband 3HH. 
Scaling Function Success Rate (%) Network Toplogy 

(hidden1 – hidden2) 

Random  

Seed 
None Linear Log Both 

128 - 32 1 66.372 81.813 80.494 83.288 
128 - 32 2 64.833 84.895 83.194 85.501 
128 - 32 3 66.372 83.198 81.631 85.55 
128 - 32 4 65.544 80.86 83.194 86.207 
128 - 64 1 73.669 86.566 82.506 87.727 
128 - 64 2 73.077 84.447 82.118 86.004 
128 - 64 3 74.219 85.025 82.192 85.71 
128 - 64 4 72.598 84.436 82.118 85.734 
128 - 128 1 92.725 90.241 78.567 93.768 
128 - 128 2 82.467 91.03 77.687 92.061 
128 - 128 3 82.398 91.32 75.659 91.535 
128 - 128 4 81.604 92.732 77.374 90.667 

 

Ideally, a presented object should be correctly classified regardless of elevation or 

rotation angle.  Using the wavelet transform as a pre-processor, many combinations of 

network topologies and data rescaling functions are processed to determine the best 

settings for optimizing the success rate.     
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IV.  Analysis and Results 

 This chapter provides the results of training and testing of the neural networks as 

described in Chapter 3.  Each subband of each level is trained and tested independently.  

Analysis and conclusions of the results are also presented.  Section 4.1 examines the 

results for the lowest resolution scale, level 3.  Section 4.2 examines the findings for level 

2.  Section 4.3 examines the findings for level 1, the highest resolution scale.  Figure 4.1 

provides an overview of the wavelet decomposition and associated levels and subbands.  

Section 4.4 analyzes the results of creating larger networks from the subband networks 

from multiple levels.  Finally, Section 4.5 lists the findings of training the level 3 and 

level 2 subband networks on a photo training set and testing with a photo testing set. 

  

 

Figure 4.1.  Levels and subbands of the wavelet decomposition. 
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Detailed statistical analysis is not performed since the focus of this research is to 

discover the merit of the wavelet transform.  This is done by examining the success rate 

and not the interaction between factors.  Throughout each section the significant details in 

graphs and tables are noted. 

 

4.1  Level 3 (Lowest Resolution) 

 The level 3 subband networks use the lowest resolution subbands as inputs.  The 

results are obtained from the training and testing of various neural network topologies 

with the four different data transformations.  Each subband is trained and tested 

independently.  Section 3.7.4 contains a more detailed description of this procedure.   

 Initial training of each network is conducted to 120 epochs which over trains the 

networks.  Overtraining is done to gather statistics that determine the epoch at which the 

network is fully trained (see Section 3.7.6).  Over trained networks are not used to 

conduct testing.  Statistics are only gathered at the point at which the network is fully 

trained.  After conducting the training runs, the following general results in Table 4.1 are 

obtained.  The first column indicates the factor.  The first four rows in this column show 

the level and subband.  The next three rows indicate the network topology where the first 

number represents the resolution of the subband (N x N pixels).  The second and third 

numbers indicate the number of nodes in the first and second hidden layers respectively.  

The final four rows of the table show the results for the four data transforms. 
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Table 4.1.  Level 3 results for each factor. 
Success Rate (%) Factor Mean (%) 

Lower 95% Upper 95%
Std Error 

Level, Subband         
3HH 81.69 80.42 82.96 0.6438 
3HL 86.67 85.4 87.94 0.6438 
3LH 90.71 89.43 91.97 0.6438 
3LL 18.65 17.38 19.92 0.6438 

          
Network         
16-128-32 70.59 69.49 71.69 0.5575 
16-128-64 69.15 67.05 69.25 0.5575 
16-128-128 69.55 68.45 70.65 0.5575 

          
Scaling Function         

Both 71.56 70.3 72.84 0.6438 
Linear 74.22 72.95 75.49 0.6438 

Log 67.97 66.7 69.24 0.6438 
None 63.96 62.69 65.24 0.6438 

 

It is evident that the 3LL subband is an under performer which is consistent with 

wavelet theory.  3LL is created by executing a low-pass filter on both the rows and 

columns of the image which results in a non-detailed representation of the image.  

Basically, no edge information is obtained, only “blobs” of color.  The three other 

subbands’ performance is very close, indicating that information is evenly distributed 

between these subbands.  This coincides with previous research that explored a 

handwritten number recognition system using wavelets [Corr02].  All three network 

topologies have nearly the same success rates, therefore, the best success rate among 

these three networks cannot be determined from the information in Table 4.1.  For this 

reason, the most computationally efficient topology, 128 nodes in the first hidden layer 

and 32 nodes in the second hidden layer, is chosen.  Examining the scaling function 
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results from Table 4.1 reveals that the results are close, but the linear scaling appears to 

outperform the other scaling functions.  However, when the results are viewed in more 

detail in Figure 4.2, linear scaling does not outperform log scaling.  Figure 4.2 allows 

comparison of results for the different network topologies, data transformations, and 

subbands.  Note that the log scaling has a lower variance in 3 of the 4 subbands.  Since 

both the log and linear scaling functions have nearly the same performance, the log 

scaling function generally exhibits a lower variance, and since the log function closely 

matches the natural exponential distribution of the wavelet coefficient values, the log data 

transform is selected.  The distribution of the wavelet coefficients is explained in Section 

2.2.2.2,.  

Now that the best data transform and best network topology for level 3 are 

decided, an average performer is chosen as explained in Section 3.7.5.  This is done by 

running the selected choices with several random seeds.  Table 4.2 shows the results with 

the chosen selections highlighted.  “Trained epoch,” the epoch at which the network is 

fully trained, is included because this indicates where training for each network, using the 

log scaling function, should cease.  The neural networks are saved at the next highest 

multiple of 5.  For example, if the trained epoch is 113, then it is rounded up to 115.  This 

is permissible since the networks are acceptably stable at this point and because only a 

small number of additional training epochs are run.  Additionally, the MSE does not 

climb which would indicate an over trained network.  Figure 4.3 shows the results for the 

3HH subband network and the MSE for training and testing.  The success rate is also 

shown and the trained epoch point is indicated.  Appendix A contains the other subbands’ 

results which are similar in appearance. 
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Figure 4.2.  Level 3 variability chart for the CAD set success rate. 
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Table 4.2.  Results of level 3 ran with random seeds. 
Subband  Network Scaling  Trained Success (%) 

3HH  16-128-32 log  113 84.456 
3HH  16-128-32 log  131 84.408 
3HH  16-128-32 log  109 80.37 
3HH  16-128-32 log  110 86.074 
3HL  16-128-32 log  74 88.139 
3HL  16-128-32 log  70 86.985 
3HL  16-128-32 log  100 91.083 
3HL  16-128-32 log  72 86.498 
3LH  16-128-32 log  74 93.853 
3LH  16-128-32 log  89 94.161 
3LH  16-128-32 log  80 95.175 
3LH  16-128-32 log  73 93.986 

 

 

 

Figure 4.3.  Level 3, HH subband trained epoch. 
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 After all three subband networks are trained (i.e. 3LH, 3HL, 3HH), larger 

networks are composed of these smaller subband networks.  The purpose of the large 

networks is to correlate the outputs of the smaller networks.  Three different 

configurations are tested.  One configuration, pictured in Figure 4.4, correlates the 

outputs from each subband network.  This is not a fully-connected architecture.  The 

other two “glue” or level networks are fully connected.  One of these networks features 

an eight node hidden layer interposed between the outputs of the subband neural 

networks and the final outputs of the system.  The other fully-connected network does not 

have a hidden layer.   

 

Figure 4.4.  Large correlating network connecting the subband networks for a level. 



 

85 

 Since the inputs to these level networks are relatively simple given the high 

success rate of the three input subband networks, the level network trains quickly, as seen 

in Figures 4.5 and 4.6.  This is especially true for the network without hidden nodes 

which trains in only two epochs.  The graph titles indicate the number of inputs (3 

subband networks x 8 outputs each = 24 inputs), level, and testing set.  Mean square error 

(MSE) is shown to indicate where the network has become stable.  These three networks 

are tested with each of the four testing sets.  For brevity, only the CAD testing set is 

analyzed in this discussion.  However, this demonstrates the analysis procedure.  Section 

4.4 contains results for all test sets. 

 

Figure 4.5.  Results of the CAD testing set on the level 3 “glue” fully connected network 
with hidden nodes. 
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From visually inspecting Figure 4.5, the graph of the success rate of the CAD 

testing set, the network is fully trained after 16 epochs.  The success rate at this point is 

94.5% (206 of 218 patterns) which is slightly better than any of the individual subband 

networks.  This is expected as hidden nodes increase performance at the expense of 

stability and training time.   

 

Figure 4.6.  Results of the CAD testing set on the level 3 “glue” fully connected network 
without hidden nodes. 

 

 From inspection of Figure 4.6, the network without hidden nodes is fully trained 

in only two epochs, and achieves a success rate of 94.0% (205 of 218 patterns).  This is 

only one pattern worse than when using the hidden layer nodes.  This agrees with Section 
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2.1.4 which states that hidden nodes help the network solve more complex problems at 

the expense of training time.   

 The graph for the correlated network results shown in Figure 4.7 is very similar to 

the fully-connected network results from Figure 4.6.  The success rate is 94.0%.  

Typically, across all level networks tested, the correlating networks yield success rates 

almost exactly the same as the no-node, fully connected networks, but require a few 

additional training epochs.  

 

 

Figure 4.7.  Results of the CAD testing set on the level 3 correlating network. 
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 The patterns that are falsely identified are examined for all three networks using a 

confusion matrix and a script that lists the name of the misclassified patterns.  Twelve 

(12) of the same patterns were misidentified by all three networks.  However, examining 

these images is inconclusive; there is no visually obvious reason why these patterns 

should be incorrectly identified.  For example, in one case the half-circle (“moon”) object 

was misidentified as the triangular object.  In other cases, the rectangular object was 

mistaken for the moon object, the triangular object, and the long tunnel shaped object. 

Table 4.3 shows a summary of the success rates for all subband and level 

networks tested with all four testing sets.  Success rates are measured at epoch 40.  In 

almost all cases, the level networks have a higher success rate than the individual 

subband networks with the exception of the 3HH subband network when tested with the 

good photos set.  The reasons for this are unknown, but across all subband and level 

networks tested, 33.3% is the highest success rate achieved on the good photos set. 

 

Table 4.3.  Subband and level network success rates (%) for level 3. 
Network Connection CAD Train CAD Test All Photos Good 

3HH Full 97.2 84.4 14.3 6.1 
3HL Full 94 83.9 11.1 33.3 
3LH Full 98.2 93.1 15.1 12.1 

Level 3 Full 100 94 16.7 21.2 
Level 3 Full w/Hidden 100 94.5 15.1 24.2 
Level 3 Correlated Outputs 100 94 16.5 21.2 

 

4.3  Level 2 

 The creation and training of the level 2 subbands follows the same process as is 

performed for the level 3 networks.  The networks are trained and statistics gathered at 

the epoch at which the network is fully trained.  Initial results are displayed in Table 4.4.   
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Table 4.4.  Level 2 results for each factor. 
Success Mean (%) Factor Mean (%) 

Lower 95% Upper 95%
Std Error 

Level, Subband         
2HH 77.13 76.53 78.41 0.4754 
2HL 85.34 85.06 86.83 0.449 
2LH 87 86.39 88.25 0.4723 

          
Network         
32-128-32 83.14 82.48 84.34 0.4723 
32-128-64 82.32 81.7 83.51 0.46 
32-128-128 84.36 83.81 85.63 0.4629 

          
Scaling Function         

Both 85.92 84.66 86.83 0.5503 
Linear 87.6 86.48 88.72 0.57 

Log 79.42 78.25 80.1 0.4701 
None 81.8 80.67 82.92 0.57 

 

Overall, the results for level 2 are very much like those for level 3.  As before, the 

network topology makes little difference so the most computationally efficient network is 

chosen.  Examining the data transform results seem to initially reveal that the linear 

transform should be chosen and, contrary to the level 3 results, the log transform is now  

the worst performer. For the sake of brevity and to show more clearly the regions of 

interest of the variability chart, only the 128-32 network topologies from the variability 

chart are shown in Figure 4.8.  Appendix B contains all of the variability charts for the 

level 2 tests. 

Figure 4.8 also displays a graph that shows the epoch at which the network is 

fully trained.  This information is not presented for the level 3 networks in Section 4.1, 

but can be found in Appendix A.  It is included here to show how the log scaling is not 
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only the worst performer for success rate, but also to demonstrate the high degree of 

variability for the trained epoch.   

 

Figure 4.8.  Level 2 variability chart for the CAD set success rate and trained epoch. 
 

This variability is a non-favorable characteristic.  The linear data scaling function is 

chosen since it typically has lower variability and a generally higher success rate than the 

other transforms. 

 The chosen selections are run with several random seeds to determine an average 

performer as explained in Section 3.7.5.  The network topology (128-32), scaling 

function (linear), and random seed have now been decided and the final level 2 networks 

are trained.  The chosen networks are highlighted in Table 4.5. 

 From this point, the same process is followed as in Section 4.1.  Once again, three 

glue networks are created that use the outputs of the subband networks as inputs.  The 

results of the CAD testing set are covered in this section.  Appendix B contains more 

detailed variability and subband results.  As before, the network without hidden nodes 
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trains much faster than the network containing hidden nodes.  The correlating network 

takes five epochs to train, but boasts the highest success rate on the 

Table 4.5.  Results of level 2 ran with random seeds. 
Subband Network  Scaling  Trained Success (%) 

2HH  32-128-32 linear  38 85.458 
2HH  32-128-32 linear  37 84.604 
2HH  32-128-32 linear  31 87.553 
2HH  32-128-32 linear  24 87.377 
2HH  32-128-32 linear  32 83.784 
2HL  32-128-32 linear  38 89.757 
2HL  32-128-32 linear  36 87.652 
2HL  32-128-32 linear  41 86.387 
2HL  32-128-32 linear  54 88.341 
2HL  32-128-32 linear  32 90.97 
2LH  32-128-32 linear  38 90.716 
2LH  32-128-32 linear  52 89.269 
2LH  32-128-32 linear  32 92.067 
2LH  32-128-32 linear  62 87.946 
2LH  32-128-32 linear  32 88.542 

 

CAD testing set.  It should be noted that the same three shapes were misidentified by all 

three level networks.  Identifying the misidentified objects yields no clues as to why they 

are misclassified.  For instance, the arch and the moon objects were misclassified as the 

rectangle object.  Table 4.6 lists the results for the level 2 subband and level networks. 

 
 

Table 4.6.  Subband and level network success rates (%) for level 2. 
Network Connection CAD Train CAD Test All Photos Good Photos

2HH Full 95.5 87.2 17.0 18.2 
2HL Full 94.1 85.8 9.0 21.2 
2LH Full 96.6 89.4 12.5 9.1 

Level 2 Full 100.0 97.7 13.8 15.2 
Level 2 Full w/Hidden 100.0 97.7 14.6 15.2 
Level 2 Correlated Outputs 100.0 98.2 13.8 15.2 
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4.3  Level 1 (Highest Resolution) 

 The same procedure that is used for levels 2 and 3, is also used for level 1.  The 

most significant difference is the amount of time that it takes to train these larger subband 

networks.  These networks have 4096 inputs (64 x 64 pixels) and take over 16 times long 

to train than the level 3 subband networks and over four times longer than the level 2 

networks.  For this reason, after choosing the best performing network topology and data 

transform, only a single additional run is performed.  The results of the pilot studies and 

this additional run are used to select the average performer as explained in Section 3.7.5. 

 Table 4.7 reveals the general results for the level 1 subband networks.  Additional 

network topologies are trained and tested under the hypothesis that additional hidden 

nodes may be necessary due to the larger number of inputs.  Recall that the level 3 

subband neural networks only have 256 inputs, level 2 networks have 1024 inputs, and 

level 1 networks have 4096 inputs.  However, this hypothesis is not fully tested in this 

research due to the amount of computational time required to run these tests.  Tests not 

using any scaling function are not run on the 256 hidden node networks due to time 

constraints and the poor performance in the previous levels when no scaling function is 

used.  

 From the results presented in Table 4.7, it initially appears that the 128-32 

network should be chosen as well as linear scaling.  These preliminary results are verified 

against the abbreviated variability chart shown in Figure 4.9.  The last three network 

topologies use 256 nodes in their first hidden layer.  Log scaling is run first on these 

larger networks and the results compared to the smaller networks that use 128 nodes in 

the first hidden layer.  No further benefit is gained from these larger networks. 
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Table 4.7.  Level 1 Results for each factor. 
Success Rate (%) Factor Mean (%) 

Lower 95% Upper 95%
Std Error 

Level, Subband         
1HH 62.53 65.8 68.48 0.6702 
1HL 80.15 78.78 81.47 0.6732 
1LH 79.3 81.45 84 0.6366 

          
Network         
64-128-32 75.48 74.21 77.02 0.7011 
64-128-64 76.04 74.73 77.36 0.6548 
64-128-128 77.53 76.22 78.84 0.6548 

64-256-32 (log) 65.06 77 82.93 1.482 
64-256-64 (log) 67.67 73.24 77.95 1.1767 

64-256-256 (log) 67.3 72.87 77.58 1.1767 
          

Scaling Function         
Both 79.4 77.87 80.57 0.6732 

Linear 88.31 85.63 88.94 0.8259 
Log 62.74 62.44 64.54 0.525 

 

Also, due to the increased computational requirements of these larger networks no further 

tests are performed using these networks.  Appendix C contains the variability chart 

displaying this information as well as more results from the level 1 tests. 

The results pictured in Table 4.7, are used to choose the random seed to use for 

training for each subband in level 1.  Due to time constraints, only three iterations for 

each chosen network and data transform are run.  The success rates for each subband are 

very close although the epoch at which the network is fully trained varies widely.  The 

randomness of the initialization state and the random jogging that occurs during training 

explains this variance.  This is analogous to rolling a ball down a hill.  The ball hits 

different bumps along the way, but eventually settles at the bottom of the hill.  
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Figure 4.9.  Level 1 variability chart for the CAD set success rate and trained epoch. 
 

However, this variance does not impact the results since only fully trained networks are 

used for testing. 

 Based on the results from Table 4.7 and, more importantly, from the variability 

charts, the 128-32 network topology is selected.  The linear data transform is selected 

based on its strong performance shown in Figure 4.9.   

 The selected topology and data transform are run once more with a different 

random seed and all the runs for this topology and data transform are compared in Table 

4.8.  The average performer is chosen and the network fully trained.  Section 3.7.5 

explains the reasoning for choosing the average performer.  

Variability Chart for Success Mean VariabilihrChail for Trained Epoch 
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The individual, trained subband networks are used to create larger networks for 

level 1.  Table 4.9 lists the results for level 1.  All three networks have consistent 

performance and all three misclassify the same seven patterns for the CAD testing set.   

 

Table 4.8.  Results of level 1 subband networks ran with random seeds. 
Subband  Network  Scaling  Trained Success (%) 

1HH  64-128-32 linear  29 82.217 
1HH  64-128-32 linear  80 82.626 
1HH  64-128-32 linear  77 82.147 
1HL  64-128-32 linear  29 90.309 
1HL  64-128-32 linear  37 88.282 
1HL  64-128-32 linear  62 90.824 
1LH  64-128-32 linear  21 92.936 
1LH  64-128-32 linear  78 89.113 
1LH  64-128-32 linear  39 91.156 

 

The training times are consistent with the level 2 and level 3 networks.  The fully 

connected, hidden node network takes the longest time to train and the fully-connected 

no-hidden network takes two epochs.  The correlating networks take slightly longer than 

the no-hidden network at three training epochs.  

 
Table 4.9.  Subband networks’ and level networks’ success rates (%) for level 1. 

Network Connection CAD Train CAD Test All Photos Good Photos
1HH Full 97.7 84.9 12.5 9.1 
1HL Full 99.1 89.0 9.0 0 
1LH Full 96.4 89.9 17.5 24.2 

Level 1 Full 100.0 96.3 12.5 9.1 
Level 1 Full w/Hidden 100.0 95.9 13.0 9.1 
Level 1 Correlated Outputs 100.0 96.3 12.2 9.1 

 

 

. 
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4.4  Multi-Level Networks. 

 As described in Sections 2.1.1 and 2.1.10, neural networks are massively parallel, 

especially the architectures used in this research.  A VLSI hardware implementation 

could process every subband in each level simultaneously.  The level 3 subband networks 

would complete first, followed by level 2, and finally by level 1.  The size of the input 

layer size and first hidden layer greatly outnumber the other nodes in the networks.  For 

this reason, the computational complexity is largely the product of the number of nodes 

in these two layers.  The level 3 subband networks executes in about half the time 

required for the level 2 networks which requires about half the time required for the large 

level 1 networks.  The glue networks are small in comparison and computational time is 

insignificant when compared with any of the subband networks.  Since almost all of the 

computational time is spent processing the subband networks, use of the correlating 

networks is almost a given since they always provide an increase in success rate on a per-

level as indicated in Figure 4.10.  All the graphs shown in this section use only the fully-

connected, level networks without hidden nodes since they consistently provide the best 

success rate performance. 

 Figure 4.10 displays the results for the CAD testing set for all the subband and 

level networks.  Note that the network trains only on the CAD training set and has never 

been presented with any images from the CAD testing set.  The computational time 

requirement is smallest at the top of the graph (subband networks in level 3) and 

increases towards the bottom of the graph.  The level networks require very little 

additional computational resources, but cannot be computed until all input subband 
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networks complete.  This also applies to the network that correlates all of the level 2 and 

3 networks and for the network that correlates all nine subbands.   

Table 4.10 reveals a summary of all the sets’ performances on the different subband and 

level networks.  Both photo sets show poor performance.  The photo set consisting of all 

photos is generally consistent at around 12% - 16%.  The good photo set shows much 

more variance, however, the HL subbands consistently outperform all other networks.  

The other two subbands, HH and LH, drag the performance of the level networks down; 

they do not even achieve the modest success of the HL networks.  These trends are easily 

seen in Figure 4.11. 

 

Figure 4.10.  Success rates for subband and level networks tested on the CAD testing set. 
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Table 4.10.  Overall results (%) for all networks. 
Network CAD Train CAD Test All Photos Good Photos 

3HH 97.2 84.4 14.3 6.1 
3HL 94.0 83.9 11.1 33.3 
3LH 98.2 93.1 15.1 12.1 

Level 3 100.0 94.0 16.7 21.2 
2HH 95.5 87.2 17.0 18.2 
2HL 94.1 85.8 9.0 21.2 
2LH 96.6 89.4 12.5 9.1 

Level 2 100.0 97.7 13.8 15.2 
Level 2,3 100.0 97.3 15.4 15.2 

1HH 97.7 84.9 12.5 9.1 
1HL 99.1 89.0 9.0 0 
1LH 96.4 89.9 17.5 24.2 

Level 1 100.0 96.3 12.5 9.1 
Level 1,2,3 100.0 97.7 14.6 24.2 

 

 

Figure 4.11.  Success rates for subband and level networks tested on the good photo set. 
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4.5  Verification Tests 

 In addition to the tests discussed in the previous four sections, the selected 

networks and data transforms are trained on the photo set.  Following the same procedure 

as the CAD training, 90% of the photo patterns are used for training and the remaining 

10% used as a photo testing set.  Once training completes, the trained neural networks are 

tested on the photo test set and on a CAD testing set.  Ten (10) runs with different 

random seeds were executed for the photo training and testing set and the results 

averaged.  The results of these tests are shown in Table 4.11. 

 

Table 4.11.  Success rates (%) of photo training vs. CAD model training. 
Trained on CAD Train Set Trained on Photo Network 

CAD Train CAD Test All Photos Good Photos Test Photos 
3HH 97.2 84.4 14.3 6.1 22.9 
3HL 94.0 83.9 11.1 33.3 35.2 
3LH 98.2 93.1 15.1 12.1 31 
2HH 95.5 87.2 17.0 18.2 16.8 
2HL 94.1 85.8 9.0 21.2 36.6 
2LH 96.6 89.4 12.5 9.1 31.4 

 

 In most cases, the networks have a much higher success rate when only training 

on the photo models.  This could be the result of the neural network keying on particular 

features since only 337 images are used for training.  It is interesting, but not unexpected, 

that corresponding subbands in different levels demonstrate about the same amount of 

success for each of the photo test sets (each column) whether the system is trained on 

CAD images or photo images.  This follows the wavelet coefficient persistence property 

discussed in Section 2.2.2.2.  The HH subbands under-perform the other two subbands 

when trained on the photo set.  The HL subbands have the highest success rates.   
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 A very large neural network is used to test the performance when using 

unmodified, spatial images.  The network is necessarily large so that it can process the 

entire image at once.  Therefore, the input layer consists of 128 x128 = 16,384 nodes.  

The first hidden layer consists of 512 nodes and the second layer contains 128 nodes.  

The output layer, used for classification of the objects, is the same as all networks used in 

this research; it contains eight nodes.  Due to its immense size, this neural network takes 

an extremely long time to process the input patterns when compared to all the other 

networks used in this research.  Calculating the number of multiply and accumulates 

required for the networks used in this research generates the following information in 

Table 4.12. 

 

Table 4.12.  Computational requirements (multiply accumulates) of neural networks used 
in this research. 

Network Nodes (input, hidden) Feedforward Back-Propagation 
16-128-32 256 - 128 - 32 - 8 37,120 74,016 
32-128-32 1024 - 128 - 32 - 8 135,424 270,624 
64-128-32 4096 - 128 - 32 - 8 528,640 1,057,056 

Glue (1 level) 24 - 8 192 216 
Glue (3 levels) 72 - 8 576 648 

Spatial 16,384 - 512 - 128 - 8 8,455,168 16,909,440 

 

One of the early pilot studies yields the results shown in Figure 4.12.  Figure 4.12 shows 

that classification of unprocessed images using the spatial network only achieved a 

success rate of about 16%.  Additionally, Table 4.12 reveals that this network requires 

over 228 times the computations as the level 3 subband networks.  Pre-processing images 

using the wavelet transform and the scaling transform achieved success rates as high as 

93% for individual subbands and as high as 97% for the level networks.  These results 
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suggest that the wavelet transform has significant merit as a pre-processing for image 

classification using a neural network.  However, due to the huge computational 

requirements, the spatial network test was only run one time. 

 

 

 

Figure 4.12.  Results of processing unmodified spatial images on a single neural network 
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4.6  Summary 

 This chapter presents the results of determining the best topology and scaling 

function, training the optimum networks using the selected scaling function, and final 

testing of the individual subband networks and the larger level networks.  The following 

summarizes the conclusions reached in this chapter: 

1. This system performs well when using the CAD modeled data, but poorly on 

photographed models. 

2. The use of 128 nodes in the first hidden layer and 32 nodes in the second hidden 

layer prove successful for all levels of the wavelet decomposition.  Using more 

hidden nodes does not significantly increase the success rate. 

3. Using a scaling function, especially linear rescaling, after the wavelet transform 

increases the success rate of the neural networks. 

4. Correlating the outputs of the individual subbands neural networks is a 

computationally inexpensive way of increasing. 

5. The wavelet transform drastically increases the success rate for object 

classification when compared to system without using any pre-processing. 
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V.  Conclusions and Recommendations 

5.1  Summary 

The objective of this research was the exploration of the benefits of the wavelet 

transform as a pre-processor for object classification by a neural network.  The following 

goals outlined in Chapter 3 and 4 accomplish this objective. 

1. Determine if the wavelet transformation is an efficient time and space pre-

processor to a neural network for object recognition. 

2. Determine which scaling function, if any, increases the success rate of the 

neural network. 

3. Determine which neural network topology proves the most successful. 

4. Determine if the multiresolution aspect of the wavelet transform can be 

utilized to increase the success rate by processing each subband 

independently and then correlating the results. 

These goals are covered in more depth in the following sections. 

 

5.1.1  The Wavelet Transform as a Pre-Processor. 

 The wavelet transform is an effective data pre-processor as evidenced in Section 

4.5.  When using only the CAD model sets, success rates rose from approximately 16% 

when processing images without the wavelet transform to over 97% when using the 

wavelet transform.  Individual subbands usually had performances around 90% on CAD 

sets and were never lower than 83.9%.  If the subband networks are used to form a larger 

correlating network, the success rate increases to 97.7%.     
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However, a conclusive comparison of the performance of neural networks using 

the wavelet transform to networks processing non-transformed, spatial images is 

premature.  More variations should be run on the large spatial network to validate these 

findings. 

 

5.1.2  Scaling Function. 

 The post-wavelet scaling function proves beneficial to the performance of the 

neural networks.  Although the log scaling function was chosen to rescale the wavelet 

coefficients for the level 3 subband networks, the linear scaling function also could have 

been chosen.  The level 2 and level 1 subband networks use linear scaling.  Although this 

scaling function does not match the natural exponential distribution of the wavelet 

coefficients, it proved highly successful.  This is most likely due to the fact that linearly 

scaling the coefficient values only preserves the large coefficients corresponding to a 

sharp change, such as an edge.  The other coefficients are effectively reduced to nearly 

zero.  Linearly scaled wavelet coefficients seem to provide a global approach for 

extracting geometric point primitives from the images. 

   

5.1.3  Network Topology. 

 The networks consisting of 128 nodes in the first hidden layer and 32 nodes in the 

second hidden layer demonstrate a success rate very near that of networks with 

considerably more hidden nodes.  Besides being more computationally efficient, these 

smaller networks are more stable according to neural network theory.  Typically, the 

subband networks train in less than 100 epochs. 
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5.1.4  Multi-resolution Wavelet Transform. 

 The resolution pyramid of the wavelet transform provides a computationally 

efficient method of lessening the computational burden while providing an effective pre-

processor for the neural networks in this research.  The three subband neural networks 

can be parallelized and followed with a small correlating network without significantly 

increasing computational time over a single subband neural network.  If a higher success 

rate is required, multiple levels of subbands can be processed in parallel without 

appreciably increasing the computational time over the largest of the input subband 

networks 

 

5.2  Recommendations for Future Research 

 This system shows strong performance when tested and trained using the CAD 

model sets.  This section provides some insights into increasing the performance of this 

system on photographed models or exploring different aspects of the system.  Some of 

these suggestions would be easy to implement while others may require a significant 

amount of work. 

 

 5.2.1  Wire-frame Models. 

 Compare the performance of the system described in this research against wire-

frame images.  Create a spatial pattern set consisting of one-bit, occluded wire-frame 

models.  Rescale the images to obtain the same scale resolutions used in this research.  

Train and test the neural networks on the spatial sets and on the CAD sets using the same 
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network configurations.  Comparing the performance of the networks using the two sets 

of data should determine if the wavelet transform is acting only as an edge filtering 

system or if the wavelet transform also provides some addition information.  

 

 5.2.2  Additional Training. 

 Train the system with more models using finer rotations and elevation angles.  

Also, create pattern sets using variations in light sources.  Model the objects so that 

shadows are projected.  Use different background colors and gradients in the background. 

Add Gaussian noise to all training sets.  All of these make the synthesized images much 

more real-like and provides many more samples for training. 

 

 5.2.3  Data Transform. 

 Experiment with quantization and thresholding of the scaling functions.  This is 

likely to have the same effect as adjusting parameters for edge detection filters, but may 

help to overcome noise in the photographed model sets. 

 

 5.2.4  Scale, Rotation, and Translational Invariant Transform. 

 Combine the wavelet transform with scale, rotational, and translationally invariant 

transforms to provide a representation that is less view dependent to the neural network.  

By its very nature, the wavelet transform seems ill suited to generalizing rotated objects 

since it filters the horizontal, vertical, and diagonal directions separately.  Any rotation 

would cause wavelet coefficients to “jump” between directional subbands. 
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 5.2.5  Rotation about Axes. 

 This research only rotates objects about one axis.  If the neural network is forming 

a good generalized model of the object, then it should be at least somewhat invariant to 

rotation about different axes.  Tests involving rotation about different axes may provide 

some insights to the internal representation of the models in the neural network. 

 

5.3  Final Thoughts 

The object recognition system used in this research performed well on the CAD 

modeled images.  Although success against real photographed models was poor, the use 

of the wavelet transform as a pre-processor to a neural network proved very successful.  

Additionally, the wavelet transform provided computationally efficient, multi-resolution 

scales that could be processed independently by subband neural networks.  These 

individual networks can be used to form larger networks that provide a higher success 

rate with less variance.  If this system is implemented in parallelized hardware, very little 

additional computational time is required.  



 

108 

Appendix A: Results for Level 3 

 

Figure A.1.  Level 3 variability chart for the CAD set trained epoch. 
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Figure A.2.  Level 3 variability chart for the CAD training set mean square error. 
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Figure A.3.  Level 3 variability chart for the CAD testing set mean square error. 
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Figure A.4.  Level 3, HL subband trained epoch. 
 

 

Figure A.5.  Level 3, LH subband trained epoch. 
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Appendix B: Results for Level 2 

 

Figure B.1.  Level 2 variability chart for the CAD set success rate. 
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Figure B.2.  Level 2 variability chart for the CAD set trained epoch. 
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Figure B.3.  Level 2 variability chart for the CAD testing set mean square error. 
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Figure B.4.  Level 2 variability chart for the CAD training set for success rate. 

■n 



 

116 

 

Figure B.5.  Level 2, HH subband trained epoch. 
 
 

 

Figure B.6.  Level 2, HL subband trained epoch. 
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Figure B.7.  Level 2, LH subband trained epoch. 
 
 

 

Figure B.8.  Results of the CAD testing set on the level 2 “glue” fully connected network 
with hidden nodes. 
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Figure B.9.  Results of the CAD testing set on the level 2 “glue” fully connected network 

without hidden nodes. 
 

 

Figure B.10.  Results of the CAD testing set on the level 2 correlating network. 
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Figure B.11.  Results of the CAD testing set on the level 2 and 3 “glue” fully connected 
network with hidden nodes. 

 
 

 

Figure B.12.  Results of the CAD testing set on the level 2 and 3 “glue” fully connected 
network without hidden nodes. 
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Figure B.13.  Results of the CAD testing set on the level 2 and 3 correlating network. 
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Appendix C: Results for Level 1 

 

Figure C.1.  Level 1 variability chart for the CAD set success rate. 
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Figure C.2.  Level 1 variability chart for the CAD set trained epoch. 
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Figure C.3.  Level 1 variability chart for the CAD testing set mean square error. 
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Figure C.4.  Level 1 variability chart for the CAD training set mean square error. 
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Figure C.5.  Level 1, HH subband trained epoch. 
 
 

 

Figure C.6.  Level 1, HL subband trained epoch. 
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Figure C.7.  Level 1, LH subband trained epoch. 
 
 

 

Figure C.8.  Results of the CAD testing set on the level 1 “glue” fully connected network 
with hidden nodes. 
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Figure C.9.  Results of the CAD testing set on the level 1 “glue” fully connected network 
without hidden nodes. 

 

 

Figure C.10.  Results of the CAD testing set on the level 1 correlating network. 
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Figure C.11.  Results of the CAD testing set on the level 1, 2, and 3 “glue” fully 
connected network with hidden nodes. 

 
 

 

Figure C.12.  Results of the CAD testing set on the level 1, 2, and 3 “glue” fully 
connected network without hidden nodes. 
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Figure C.13.  Results of the CAD testing set on the level 1, 2, and 3 correlating network. 
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Appendix D: Results for Training and Testing with Photo Sets 

 
 

 

Figure D.1.  Variability chart for the photo set success rate. 
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Figure D.2.  Variability chart for the photo set trained epoch. 
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Figure D.3.  Variability chart for the photo testing set mean square error. 
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Figure D.4.  Variability chart for the photo training set mean square error. 
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Appendix E: MATLAB Code for Computing Trained Epoch 
 

 

This function computes the epoch at which the network is fully trained.  The training 

MSE, test MSE, success rate on the testing set, and a list of the epochs.  Since the testing 

set measurements are only made every five epochs, the values must be interpolated.  This 

algorithm works by computing the first and second derivatives and examining the rates of 

change.  It initially looks for the large initial drop in MSE and then switches to examining 

the success rate.  The network is considered fully trained once the average success rate 

for the last 10 epochs falls within 1.5% of the remaining values up through epoch 120. 

  
 
function [startidx, v1mean, v1var, v2mean, v2var, v3mean, v3var] = ... 
         choose_cutoff(v1, v2, v3, v4) 
% Arguments: 
%    v1 = train_mse 
%    v2 = test_mse 
%    v3 = test_success 
%    v4 = train_epoch 
% Only v2, v3 should require interpolation. 
%  
% Returns: 
%    startidx = epoch at which the network is fully trained 
% The other returned values correspond to the input arguments – 
% mean and variance. 
 
 
WINDOWSIZE = 10;   %window size to use when checking success 
SUCCESSAVG = .015; %average difference allowed for success (1.5% for 
this case) 
 
% This values were determined through multiple tests 
DERIV1TEST = -.1;  %used for 1st derivative test on MSE 
DERIV2TEST = .03;  %used for 2nd derivative test on MSE 
ENDSUCCESSSIZE = 20; %number of last success samples to use for best 
case success 
 
% Sanity check on arguments 
if (nargin ~= 4) 
   error('Bad argument(s)') 
end 
 
%ensure that the row vectors are changed to column vectors 
if (size(v1,1) < size(v1,2) ) 
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   v1 = flipud(rot90(v1)); 
end 
if (size(v2,1) < size(v2,2) ) 
   v2 = flipud(rot90(v2)); 
end 
if (size(v3,1) < size(v3,2) ) 
   v3 = flipud(rot90(v3)); 
end 
if (size(v4,1) < size(v4,2) ) 
   v4 = flipud(rot90(v4)); 
end 
 
%scale MSE up so that it is easier to test (and appears better if 
plotted) 
scalefac = 100 / max(max(v1),max(v2)); 
v1 = v1 * scalefac; 
v2 = v2 * scalefac; 
 
%make all vector the same length using cubic interpolation 
v2 = interp1([1: size(v4,1)/size(v2,1) : size(v4,1)], v2, v4, 'cubic'); 
v3 = interp1([1: size(v4,1)/size(v3,1) : size(v4,1)], v3, v4, 'cubic'); 
 
 
%calculate 1st and 2nd derivatives for each, must do fit to create 
%an expression that can be differentiated 
modelv1 = fit(v4,v1,'cubicspline'); 
modelv2 = fit(v4,v2,'cubicspline'); 
%modelv3 = fit(v4,v3,'cubicspline');   %not used 
 
[der1_v1,der2_v1] = differentiate(modelv1,v4); 
[der1_v2,der2_v2] = differentiate(modelv2,v4); 
%[der1_v3,der2_v3] = differentiate(modelv3,v4);  %not used 
 
 
%Get past big inital drop, analyze derivates to find end of major slope 
for startidx=1:size(v4,1) 
   %fprintf('Deriv (%d)   TrainMSE: %8.3f, %8.3f    Test MSE: %8.3f, 
%8.3f\n',startidx, der1_v1(x),der2_v1(x),der1_v2(x),der2_v2(x) ) 
   if ( (der1_v1(startidx) >= DERIV1TEST) && (abs(der2_v1(startidx)) <= 
DERIV2TEST) && ... 
        (der1_v2(startidx) >= DERIV1TEST) && (abs(der2_v2(startidx)) <= 
DERIV2TEST)   ) 
      break 
   end 
end 
 
%Ensure that the starting place for next loop reasonable 
if (startidx < WINDOWSIZE), startidx = WINDOWSIZE+1; end 
 
if (startidx < (size(v4,1)-WINDOWSIZE) ) 
   %Find where success levels out - tests the average for the 'window' 
and compares 
   %it to the average of the last ENDSUCCESSSIZE samples. If within 
SUCCESSAVG percent 
 
   %then consider stop training 
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   for startidx2=startidx: (size(v4,1)-WINDOWSIZE) 
      winavg = mean(v3(startidx2:startidx2+WINDOWSIZE)); 
      endavg = mean(v3(size(v3,1)-ENDSUCCESSSIZE:size(v3,1) ) ); 
      %fprintf('Avg at (%d)   Success: %8.3f, %8.3f   Diff = 
%5.2f%%\n', ... 
      %         startidx2, winavg, endavg, abs(1-winavg/endavg)*100 ) 
      if (( 1-winavg/endavg) < SUCCESSAVG ) 
         break 
      end 
   end 
   startidx = max(startidx,startidx2); 
   if (startidx >= (size(v4,1)-WINDOWSIZE) ) 
      startidx = -1; %error code for "not trained" 
   end 
end 
 
%statistics for the samples starting at cutoff and going to end 
if (startidx >= (size(v4,1)-WINDOWSIZE) )  %not trained so get stats 
over all epochs 
   startidx = 1; 
end 
endidx = size(v4,1); 
v1var  = var( v1( startidx : endidx ) ); 
v1mean = mean(v1( startidx : endidx ) ); 
v2var  = var( v2( startidx : endidx ) ); 
v2mean = mean(v2( startidx : endidx ) ); 
v3var  = var( v3( startidx : endidx ) ); 
v3mean = mean(v3( startidx : endidx ) ); 
 
%print results to screen 
fprintf('           Train MSE           | Test MSE             | 
Success\n') 
fprintf('           Mean      Variance  | Mean      Variance   | Mean      
Variance  \n') 
fprintf('(%3d-%3d) %6.4f     %8.5f  |%6.4f     %8.5f  | %6.3f    
%8.3f\n\n', ... 
        startidx, endidx, v1mean, v1var, v2mean, v2var, v3mean, v3var) 
 
if (startidx == 1) 
   startidx = -1; 
end 
 
return 
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